首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In this paper, we study the interaction of elementary waves including delta‐shock waves on a boundary for a hyperbolic system of conservation laws. A boundary entropy condition is derived, thanks to the results of Dubois and Le Floch (J. Differ. Equations 1988; 71 :93–122) by taking a suitable entropy–flux pair. We obtain the solutions of the initial‐boundary value problem for the system constructively, in which initial‐boundary data are piecewise constant states. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term χtt, χ being the order parameter, which is linearly coupled with an evolution equation for the (relative) temperature ?. The latter can be of hyperbolic type if the Cattaneo-Maxwell heat conduction law is assumed. The state variables and the chemical potential are subject to the homogeneous Neumann boundary conditions. We first provide conditions which ensure the well-posedness of the initial and boundary value problem. Then, we prove that the corresponding dynamical system is dissipative and possesses a global attractor. Moreover, assuming that the nonlinear potential is real analytic, we establish that each trajectory converges to a single steady state by using a suitable version of the ?ojasiewicz-Simon inequality. We also obtain an estimate of the decay rate to equilibrium.  相似文献   

3.
In this work, a modified Holling–Tanner predator–prey model is analyzed, considering important aspects describing the interaction such as the predator growth function is of a logistic type; a weak Allee effect acting in the prey growth function, and the functional response is of hyperbolic type. Making a change of variables and time rescaling, we obtain a polynomial differential equations system topologically equivalent to the original one in which the non‐hyperbolic equilibrium point (0,0) is an attractor for all parameter values. An important consequence of this property is the existence of a separatrix curve dividing the behavior of trajectories in the phase plane, and the system exhibits the bistability phenomenon, because the trajectories can have different ω ? limit sets; as example, the origin (0,0) or a stable limit cycle surrounding an unstable positive equilibrium point. We show that, under certain parameter conditions, a positive equilibrium may undergo saddle‐node, Hopf, and Bogdanov–Takens bifurcations; the existence of a homoclinic curve on the phase plane is also proved, which breaks in an unstable limit cycle. Some simulations to reinforce our results are also shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We prove existence of two nonconstant exponentially stable equilibria to the heat equation supplied with a nonlinear Neumann boundary condition in any smooth n-dimensional domain (n ≥ 2), independently of its geometry. The Neumann boundary condition reflects the fact that the flux on the boundary is proportional to the product of a prescribed bistable function of the density or concentration with an indefinite weight. Such solutions are obtained via variational methods, by minimizing the corresponding energy functional on suitable invariant sets to the semiflow generated by the parabolic problem. But this is possible only if the parameter in the boundary condition is sufficiently large, otherwise we prove using the Implicit Function Theorem the uniqueness of constant equilibrium solutions. The same theorem allows us to derive isolation and smooth dependence on the parameter for nonconstant exponentially stable equilibria found.  相似文献   

5.
We assume that Ωt is a domain in ?3, arbitrarily (but continuously) varying for 0?t?T. We impose no conditions on smoothness or shape of Ωt. We prove the global in time existence of a weak solution of the Navier–Stokes equation with Dirichlet's homogeneous or inhomogeneous boundary condition in Q[0, T) := {( x , t);0?t?T, x ∈Ωt}. The solution satisfies the energy‐type inequality and is weakly continuous in dependence of time in a certain sense. As particular examples, we consider flows around rotating bodies and around a body striking a rigid wall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
We study the asymptotic time behavior of global smooth solutions to general entropy, dissipative, hyperbolic systems of balance laws in m space dimensions, under the Shizuta‐Kawashima condition. We show that these solutions approach a constant equilibrium state in the Lp‐norm at a rate O(t? (m/2)(1 ? 1/p)) as t → ∞ for p ∈ [min{m, 2}, ∞]. Moreover, we can show that we can approximate, with a faster order of convergence, the conservative part of the solution in terms of the linearized hyperbolic operator for m ≥ 2, and by a parabolic equation, in the spirit of Chapman‐Enskog expansion in every space dimension. The main tool is given by a detailed analysis of the Green function for the linearized problem. © 2007 Wiley Periodicals, Inc.  相似文献   

7.
We consider a conserved phase‐field system of Caginalp type, characterized by the assumption that both the internal energy and the heat flux depend on the past history of the temperature and its gradient, respectively. The latter dependence is a law of Gurtin–Pipkin type, so that the equation ruling the temperature evolution is hyperbolic. Thus, the system consists of a hyperbolic integrodifferential equation coupled with a fourth‐order evolution equation for the phase‐field. This model, endowed with suitable boundary conditions, has already been analysed within the theory of dissipative dynamical systems, and the existence of an absorbing set has been obtained. Here we prove the existence of the universal attractor. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
We prove an uniqueness and existence theorem for the entropy weak solution of non-linear hyperbolic conservation laws of the form , with initial data and boundary condition. The scalar function u = u(x, t), x > 0, t > 0, is the unknown; the function f = f(u) is assumed to be strictly convex. We also study the weighted Burgers' equation: α ? ? . We give an explicit formula, which generalizes a result of Lax. In particular, a free boundary problem for the flux f(u(.,.)) at the boundary is solved by introducing a variational inequality. The uniqueness result is obtained by extending a semigroup property due to Keyfitz.  相似文献   

9.
We consider two quasi-linear initial-value Cauchy problems on ? d : a parabolic system and an hyperbolic one. They both have a first order non-linearity of the form φ(t, x, u)·?u, a forcing term h(t, x, u) and an initial condition u 0 ∈ L (? d ) ∩ C (? d ), where φ (resp. h) is smooth and locally (resp. globally) Lipschitz in u uniformly in (t, x). We prove the existence of a unique global strong solution for the parabolic system. We show the existence of a unique local strong solution for the hyperbolic one and we give a lower bound regarding its blow up time. In both cases, we do not use weak solution theory but a direct construction based on parabolic schemes studied via a stochastic approach and a regularity result for sequences of parabolic operators. The result on the hyperbolic problem is performed by means of a non-classical vanishing viscosity method.  相似文献   

10.
We consider a one‐dimensional coupled problem for elliptic second‐order ODEs with natural transmission conditions. In one subinterval, the coefficient ϵ>0 of the second derivative tends to zero. Then the equation becomes there hyperbolic and the natural transmission conditions are not fulfilled anymore. The solution of the degenerate coupled problem with a flux transmission condition is corrected by an internal boundary layer term taking into account the viscosity ϵ. By using singular perturbation techniques, we show that the remainders in our first‐order asymptotic expansion converge to zero uniformly. Our analysis provides an a posteriori correction procedure for the numerical treatment of exterior viscous compressible flow problems with coupled Navier–Stokes/Euler models. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
We consider the Navier–Stokes system with variable density and variable viscosity coupled to a transport equation for an order‐parameter c. Moreover, an extra stress depending on c and ?c, which describes surface tension like effects, is included in the Navier–Stokes system. Such a system arises, e.g. for certain models of granular flows and as a diffuse interface model for a two‐phase flow of viscous incompressible fluids. The so‐called density‐dependent Navier–Stokes system is also a special case of our system. We prove short‐time existence of strong solution in Lq‐Sobolev spaces with q>d. We consider the case of a bounded domain and an asymptotically flat layer with a combination of a Dirichlet boundary condition and a free surface boundary condition. The result is based on a maximal regularity result for the linearized system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In the numerical computation of hyperbolic equations it is not practical to use infinite domains. Instead, one truncates the domain with an artificial boundary. In this study we construct a sequence of radiating boundary conditions for wave-like equations. We prove that as the artificial boundary is moved to infinity the solution approaches the solution of the infinite domain as O(r?m?1/2) for the m-th boundary condition. Numerical experiments with problems in jet acoustics verify the practical nature and utility of the boundary conditions.  相似文献   

13.
We establish the existence and stability of multidimensional transonic shocks (hyperbolic‐elliptic shocks) for the Euler equations for steady compressible potential fluids in infinite cylinders. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for velocity, can be written as a second order nonlinear equation of mixed elliptic‐hyperbolic type for the velocity potential. The transonic shock problem in an infinite cylinder can be formulated into the following free boundary problem: The free boundary is the location of the multidimensional transonic shock which divides two regions of C1,α flow in the infinite cylinder, and the equation is hyperbolic in the upstream region where the C1,α perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem in unbounded domains. Our results indicate that there exists a solution of the free boundary problem such that the equation is always elliptic in the unbounded downstream region, the uniform velocity state at infinity in the downstream direction is uniquely determined by the given hyperbolic phase, and the free boundary is C1,α, provided that the hyperbolic phase is close in C1,α to a uniform flow. We further prove that, if the steady perturbation of the hyperbolic phase is C2,α, the free boundary is C2,α and stable under the steady perturbation. © 2003 Wiley Periodicals Inc.  相似文献   

14.
In this paper, we consider the Bresse system coupled with the Fourier law of heat conduction. We prove that the decay rate of the solution is very slow. In fact, we show that the L2‐norm of the solution decays with the rate of (1 + t)?1/12 similar to the one obtained for the Timoshenko system. In addition, we found that the wave speed of the first two equations still control the decay rate of the solution with respect to the regularity of the initial data. This seems to be the first result dealing with the behavior of the Cauchy problem in the Bresse–Fourier model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
We consider the initial boundary value problem to the Navier–Stokes equations in a bounded domain with the inhomogeneous time-dependent data b(t) ? H1/2(?W){\beta(t) \in H^{1/2}(\partial\Omega)} under the general flux condition. We establish a reproductive property for weak solutions of the Navier–Stokes equations. Here, the reproductive property is regarded as the generalization of the time periodicity. As an application, we can prove the existence of periodic weak solutions.  相似文献   

16.
We study a semilinear parabolic partial differential equation of second order in a bounded domain Ω ? ?N, with nonstandard boundary conditions (BCs) on a part Γnon of the boundary ?Ω. Here, neither the solution nor the flux are prescribed pointwise. Instead, the total flux through Γnon is given, and the solution along Γnon has to follow a prescribed shape function, apart from an additive (unknown) space‐constant α(t). We prove the well‐posedness of the problem, provide a numerical method for the recovery of the unknown boundary data, and establish the error estimates. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 167–191, 2003  相似文献   

17.
We consider the long‐time behavior and optimal decay rates of global strong solution to three‐dimensional isentropic compressible Navier–Stokes (CNS) system in the present paper. When the regular initial data also belong to some Sobolev space with l?4 and s∈[0, 1], we show that the global solution to the CNS system converges to the equilibrium state at a faster decay rate in time. In particular, the density and momentum converge to the equilibrium state at the rates (1 + t)?3/4?s/2 in the L2‐norm or (1 + t)?3/2?s/2 in the L‐norm, respectively, which are shown to be optimal for the CNS system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A Legendre pseudospectral method is proposed for solving approximately an inverse problem of determining an unknown control parameter p(t) which is the coefficient of the solution u(x, y, z, t) in a diffusion equation in a three‐dimensional region. The diffusion equation is to be solved subject to suitably prescribed initial‐boundary conditions. The presence of the unknown coefficient p(t) requires an extra condition. This extra condition considered as the integral overspecification over the spacial domain. For discretizing the problem, after homogenization of the boundary conditions, we apply the Legendre pseudospectral method in a matrix based manner. As a results a system of nonlinear differential algebraic equations is generated. Then by using suitable transformation, the problem will be converted to a homogeneous time varying system of linear ordinary differential equations. Also a pseudospectral method for efficient solving of the resulted system of ordinary differential equations is proposed. The solution of this system gives the approximation to values of u and p. The matrix based structure of the present method makes it easy to implement. Numerical experiments are presented to demonstrate the accuracy and the efficiency of the proposed computational procedure. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 74‐93, 2012  相似文献   

19.
We consider a material with thermal memory occupying a bounded region Ω with boundary Γ. The evolution of the temperature u(t,x) is described by an integrodifferential parabolic equation containing a heat source of the form f(t)z0(x). We formulate an initial and boundary value control problem based on a feedback device located on Γ and prescribed by means of a quite general memory operator. Assuming both u and the source factor f are unknown, we study the corresponding inverse and control problem on account of an additional information. We prove a result of existence and uniqueness of the solution (u,f). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This work is a continuation of our previous work. In the present paper, we study the existence and uniqueness of global piecewise C1 solutions with shock waves to the generalized Riemann problem for general quasilinear hyperbolic systems of conservation laws with linear damping in the presence of a boundary. It is shown that the generalized Riemann problem for general quasilinear hyperbolic systems of conservation laws with linear damping with nonlinear boundary conditions in the half space {(t, x) | t ≥ 0, x ≥ 0} admits a unique global piecewise C1 solution u = u (t, x) containing only shock waves with small amplitude and this solution possesses a global structure similar to that of a self‐similar solution u = U (x /t) of the corresponding homogeneous Riemann problem, if each characteristic field with positive velocity is genuinely nonlinear and the corresponding homogeneous Riemann problem has only shock waves but no rarefaction waves and contact discontinuities. This result is also applied to shock reflection for the flow equations of a model class of fluids with viscosity induced by fading memory. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号