首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A predictor–corrector scheme is developed for the numerical solution of the sine‐Gordon equation using the method of lines approach. The solution of the approximating differential system satisfies a recurrence relation, which involves the cosine function. Pade' approximants are used to replace the cosine function in the recurrence relation. The resulting schemes are analyzed for order, stability, and convergence. Numerical results demonstrate the efficiency and accuracy of the predictor–corrector scheme over some well‐known existing methods. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 133–146, 2000  相似文献   

2.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

3.
This article deals with the numerical solution to some models described by the system of strongly coupled reaction–diffusion equations with the Neumann boundary value conditions. A linearized three‐level scheme is derived by the method of reduction of order. The uniquely solvability and second‐order convergence in L2‐norm are proved by the energy method. A numerical example is presented to demonstrate the accuracy and efficiency of the proposed method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

4.
A predictor–corrector (P–C) scheme based on the use of rational approximants of second‐order to the matrix‐exponential term in a three‐time level reccurence relation is applied to the nonlinear Klein‐Gordon equation. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. Both the predictor and the corrector scheme are analyzed for local truncation error and stability. The proposed method is applied to problems possessing periodic, kinks and single, double‐soliton waves. The accuracy as well as the long time behavior of the proposed scheme is discussed. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

5.
Finite difference scheme to the generalized one‐dimensional sine‐Gordon equation is considered in this paper. After approximating the second order derivative in the space variable by the compact finite difference, we transform the sine‐Gordon equation into an initial‐value problem of a second‐order ordinary differential equation. Then Padé approximant is used to approximate the time derivatives. The resulting fully discrete nonlinear finite‐difference equation is solved by a predictor‐corrector scheme. Both Dirichlet and Neumann boundary conditions are considered in our proposed algorithm. Stability analysis and error estimate are given for homogeneous Dirichlet boundary value problems using energy method. Numerical results are given to verify the condition for stability and convergence and to examine the accuracy and efficiency of the proposed algorithm. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

6.
Numerical solutions of the Benjamin‐Bona‐Mahony‐Burgers equation in one space dimension are considered using Crank‐Nicolson‐type finite difference method. Existence of solutions is shown by using the Brower's fixed point theorem. The stability and uniqueness of the corresponding methods are proved by the means of the discrete energy method. The convergence in L‐norm of the difference solution is obtained. A conservative difference scheme is presented for the Benjamin‐Bona‐Mahony equation. Some numerical experiments have been conducted in order to validate the theoretical results.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

7.
A numerical method based on a predictor–corrector (P‐C) scheme arising from the use of rational approximants of order 3 to the matrix‐exponential term in a three‐time level recurrence relation is applied successfully to the one‐dimensional sine‐Gordon equation, already known from the bibliography. In this P‐C scheme a modification in the corrector (MPC) has been proposed according to which the already evaluated corrected values are considered. The method, which uses as predictor an explicit finite‐difference scheme arising from the second order rational approximant and as corrector an implicit one, has been tested numerically on the single and the soliton doublets. Both the predictor and the corrector schemes are analyzed for local truncation error and stability. From the investigation of the numerical results and the comparison of them with other ones known from the bibliography it has been derived that the proposed P‐C/MPC schemes at least coincide in terms of accuracy with them. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

8.
The Camassa–Holm (CH) system is a strong nonlinear third‐order evolution equation. So far, the numerical methods for solving this problem are only a few. This article deals with the finite difference solution to the CH equation. A three‐level linearized finite difference scheme is derived. The scheme is proved to be conservative, uniquely solvable, and conditionally second‐order convergent in both time and space in the discrete L norm. Several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 451–471, 2014  相似文献   

9.
The paper presents an enhanced analysis of the Lax‐Wendroff difference scheme—up to the eighth‐order with respect to time and space derivatives—of the modified‐partial differential equation (MDE) of the constant‐wind‐speed advection equation. The modified equation has been so far derived mainly as a fourth‐order equation. The Π ‐form of the first differential approximation (differential approximation or equivalent equation) derived by expressing the time derivatives in terms of the space derivatives is used for presenting the MDE. The obtained coefficients at higher order derivatives are analyzed for indications of the character of the dissipative and dispersive errors. The authors included a part of the stencil applied for determining the modified differential equation up to the eighth‐order of the analyzed modified differential equation for the second‐order Lax‐Wendroff scheme. Neither the derived coefficients at the space derivatives of order p ∈ (7 – 8) in the modified differential equation for the Lax‐Wendroff difference scheme nor the results of analyses on the basis of these coefficients of the group velocity, phase shift errors, or dispersive and dissipative features of the scheme have been published. The MDEs for 2 two‐step variants of the Lax‐Wendroff type difference schemes and the MacCormack predictor–corrector scheme (see MacCormack's study) constructed for the scalar hyperbolic conservation laws are also presented in this paper. The analysis of the inviscid Burgers equation solution with the initial condition in a form of a shock wave has been discussed on their basis. The inviscid Burgers equation with the source is also presented. The theory of MDE started to develop after the paper of C. W. Hirt was published in 1968.  相似文献   

10.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

11.
This paper describes the construction of block predictor–corrector methods based on Runge–Kutta–Nyström correctors. Our approach is to apply the predictor–corrector method not only with stepsize h, but, in addition (and simultaneously) with stepsizes a i h, i = 1 ...,r. In this way, at each step, a whole block of approximations to the exact solution at off‐step points is computed. In the next step, these approximations are used to obtain a high‐order predictor formula using Lagrange or Hermite interpolation. Since the block approximations at the off‐step points can be computed in parallel, the sequential costs of these block predictor–corrector methods are comparable with those of a conventional predictor–corrector method. Furthermore, by using Runge–Kutta–Nyström corrector methods, the computation of the approximation at each off‐step point is also highly parallel. Numerical comparisons on a shared memory computer show the efficiency of the methods for problems with expensive function evaluations.  相似文献   

12.
This article is concerned with a high‐order difference scheme presented by Jain, Jain, and Mohanty for the nonlinear parabolic equation uxx = F(x, t, u, ut, ux) with Dirichlet boundary conditions. The solvability of the difference scheme is proved by Brower's fixed point theorem and the uniqueness of the difference solution is obtained by showing that the coefficient matrix is strictly column‐wise diagonal dominant. The boundedness and convergence of the difference scheme are obtained. The convergence order is 4 in space and 2 in time in L‐norm. A numerical example is provided to illustrate the validity of the theoretical results. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq , 2006  相似文献   

13.
A linearized Crank–Nicolson‐type scheme is proposed for the two‐dimensional complex Ginzburg–Landau equation. The scheme is proved to be unconditionally convergent in the L2 ‐norm by the discrete energy method. The convergence order is \begin{align*}\mathcal{O}(\tau^2+h_1^2+h^2_2)\end{align*}, where τ is the temporal grid size and h1,h2 are spatial grid sizes in the x ‐ and y ‐directions, respectively. A numerical example is presented to support the theoretical result. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

14.
This article is concerned with a high‐order implicit difference scheme presented by Mohanty, Jain, and George for the nonlinear hyperbolic equation utt = A(x, t)uxx + F(x, t, u, ut, ux) with Dirichlet boundary conditions. Some prior estimates of the difference solution are obtained by the energy methods. The solvability of the difference scheme is proved by the energy method and Brower's fixed point theorem. Similarly, the uniqueness, the convergence in L‐norm and the stability of the difference solution are obtained. A numerical example is provided to demonstrate the validity of the theoretical results. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 484–498, 2007  相似文献   

15.
In this paper, we develop a new, simple, and accurate scheme to obtain approximate solution for nonlinear differential equation in the sense of Caputo‐Fabrizio operator. To derive this new predictor‐corrector scheme, which suits on Caputo‐Fabrizio operator, firstly, we obtain the corresponding initial value problem for the differential equation in the Caputo‐Fabrizio sense. Hence, by fractional Euler method and fractional trapeziodal rule, we obtain the predictor formula as well as corrector formula. Error analysis for this new method is derived. To test the validity and simplicity of this method, some illustrative examples for nonlinear differential equations are solved.  相似文献   

16.
In this article, we develop a parameter uniform numerical method for a class of singularly perturbed parabolic equations with a multiple boundary turning point on a rectangular domain. The coefficient of the first derivative with respect to x is given by the formula a0(x, t)xp, where a0(x, t) ≥ α > 0 and the parameter p ∈ [1,∞) takes the arbitrary value. For small values of the parameter ε, the solution of this particular class of problem exhibits the parabolic boundary layer in a neighborhood of the boundary x = 0 of the domain. We use the implicit Euler method to discretize the temporal variable on uniform mesh and a B‐spline collocation method defined on piecewise uniform Shishkin mesh to discretize the spatial variable. Asymptotic bounds for the derivatives of the solution are established by decomposing the solution into smooth and singular component. These bounds are applied in the convergence analysis of the proposed scheme on Shishkin mesh. The resulting method is boundary layer resolving and has been shown almost second‐order accurate in space and first‐order accurate in time. It is also shown that the proposed method is uniformly convergent with respect to the singular perturbation parameter ε. Some numerical results are given to confirm the predicted theory and comparison of numerical results made with a scheme consisting of a standard upwind finite difference operator on a piecewise uniform Shishkin mesh. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1143–1164, 2011  相似文献   

17.
This article describes a numerical method based on the boundary integral equation and dual reciprocity method for solving the one‐dimensional Sine‐Gordon (SG) equation. The time derivative is approximated by the time‐stepping method and a predictor–corrector scheme is employed to deal with the nonlinearity which appears in the problem. Numerical results are presented for some problems to demonstrate the usefulness and accuracy of this approach. In addition, the conservation of energy in SG equation is investigated. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

18.
In this article, we analyze a Crank‐Nicolson‐type finite difference scheme for the nonlinear evolutionary Cahn‐Hilliard equation. We prove existence, uniqueness and convergence of the difference solution. An iterative algorithm for the difference scheme is given and its convergence is proved. A linearized difference scheme is presented, which is also second‐order convergent. Finally a new difference method possess a Lyapunov function is presented. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 437–455, 2007  相似文献   

19.
In this article, we continue the numerical study of hyperbolic partial differential‐difference equation that was initiated in (Sharma and Singh, Appl Math Comput 9 ). In Sharma and Singh, the authors consider the problem with sufficiently small shift arguments. The term negative shift and positive shift are used for delay and advance arguments, respectively. Here, we propose a numerical scheme that works nicely irrespective of the size of shift arguments. In this article, we consider hyperbolic partial differential‐difference equation with negative or positive shift and present a numerical scheme based on the finite difference method for solving such type of initial and boundary value problems. The proposed numerical scheme is analyzed for stability and convergence in L norm. Finally, some test examples are given to validate convergence, the computational efficiency of the numerical scheme and the effect of shift arguments on the solution.© 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

20.
It is as well known that nonsymmetric algebraic Riccati equations arising in transport theory can be translated to vector equations. In this paper, we propose six predictor–corrector‐type iterative schemes to solve the vector equations. And we give the convergence of these schemes. Unlike the previous work, we prove that all of them converge to the minimal positive solution of the vector equations by the initial vector (e,e), where e = (1,1, ? ,1)T. Moreover, we prove that all the sequences generated by the iterative schemes are strictly and monotonically increasing and bounded above. In addition, some numerical results are also reported in the paper, which confirm the good theoretical properties of our approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号