首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A novel synthetic method for the preparation of copolyesters comprised of diols and bisphenols using tosyl chloride (TsCl)/DMF/pyridine (Py) as a condensing agent has been developed. A variety of combinations of monomers could produce relatively high molecular weight copolymers, and better results were obtained by initial oligomerization of diols followed by bisphenols. In order to demonstrate usefulness of this method, copolymers comprised of IPA/TPA (50/50), bis(2‐hydroxyethyl)terephthalate (BHET),and several bisphenols were prepared and compared to the poly(ethylene terephthalate) (PET) modified by TPA and 2,2‐bis(4‐hydroxyphenyl)propane (BPA) diacetate in terms of their thermal properties. The length of mesogenic unit segments in the thermotropic IPA/TPA (50/50)‐BHET/ 4,4′‐dihydroxybenzophenone (4,4′‐DHBP) (50/50) copolymer was changed by initial reaction of BHET followed by dropwise addition of 4,4′‐DHBP in the two‐stage polycondensation and also by varying the amounts of BHET used at the initial and final stages in the three‐stage copolycondensation, and the results were studied by NMR and their thermal properties. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1270–1276, 2000  相似文献   

2.
Aliphatic polyurethanes could be obtained in high yield via a non‐isocyanate method based on the self‐polycondensation of dihydroxyurethanes obtained by the reaction of diamines and ethylene carbonate. The polycondensation under a N2 atmosphere yielded [6,2]polyurethane with a Mn value of 5300 in 87% yield. Two‐step polycondensation, consisting of the polycondensation under a N2 atmosphere followed by that under reduced pressure, was effective to improve the yield and the molecular weight up to 90% and 10,000, respectively. Although the second polycondensation step at 180 °C was accompanied by formation of urea groups, this side reaction was relatively suppressed at 150 °C. The resulting polyurethane having hydroxyl groups at both of the end groups was converted to polyurethane methacrylate via a reaction with glycidyl methacrylate, and the polyurethane methacrylate served as a crosslinker for radical polymerization of methyl acrylate. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
The Pd‐catalyzed three‐component coupling polycondensation of diiodoarenes, nonconjugated dienes, and carbonucleophiles afforded poly(arylene alkenylene)s with moderate molecular weight in good yield. The reaction involves Mizoroki‐Heck coupling, olefin migration via chain walking, and addition of the carbonucleophile to the resulting π‐allylpalladium species. The polymerization with a slight excess of nucleophile with respect to diiodoarene also proceeded to give the polymer without significant decrease in molecular weight in spite of the nonstoichiometric mixture of the monomers. The Pd‐catalyzed three‐component coupling polycondensation of diiodoarenes, nonconjugated dienes, and diimide also proceeded. The base used in the reaction is critical for yield and molecular weight of the product. The reaction using NaHCO3 afforded the product with low solubility, which can be explained by the high molecular weight of the polymer and/or the strong interaction of the electron donating dimethoxyphenylene groups and electron accepting diimide groups in the polymer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2535–2542  相似文献   

4.
A novel synthetic method for soluble precursor polymers of poly(p‐phenylene vinylene) (PPV) derivatives by the palladium‐catalyzed three‐component coupling polycondensation of aromatic diiodides, aromatic bis(boronic acid) derivatives, and norbornadiene is described. For example, the polymerization of 1,4‐diiodo‐2,5‐dioctyloxybenzene, benzene‐1,4‐bis(boronic acid propanediol ester), and norbornadiene at 100 °C for 3 days provided a polymer consisting of the three monomer units in a 97% yield (number‐average molecular weight = 3100, weight‐average molecular weight/number‐average molecular weight = 1.37). A derivative of PPV was produced smoothly by the retro Diels–Alder reaction of the polymer both in a dodecyloxybenzene solution and in a film at 200 °C in vacuo. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3403–3410, 2005  相似文献   

5.
The Pd‐catalyzed polycondensation of 4‐octylaniline with various dibromoarylenes was carried out under microwave heating. Microwave heating led to a decrease in the reaction time and an increase in the molecular weight of the polymers as compared to conventional heating. Microwave heating also allowed the catalyst loading to be reduced to 1 mol %, yielding polymerization results that were comparable to those under conventional heating and 5 mol % catalyst. Investigations regarding field‐effect transistors and organic photovoltaic cells using the obtained poly(arylamine) with azobenzene units revealed that increasing the molecular weight of the polymer led to improved device performance, including hole mobility and power conversion efficiency. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 536–542  相似文献   

6.
A high molecular weight, thermally and chemical stable hexafluoroisopropylidene containing polybenzimidazole (6F‐PBI) was synthesized from 3,3′‐diaminobenzidine (TAB) and 2,2‐bis(4‐carboxyphenyl) hexafluoropropane (6F‐diacid) using polyphosphoric acid (PPA) as both the polycondensation agent and the polymerization solvent. Investigation of polymerization conditions to achieve high molecular weight polymers was explored via stepwise temperature control, monomer concentration in PPA, and final polymerization temperature. The polymer characterization included inherent viscosity (I.V.) measurement and GPC as a determination of polymer molecular weight, thermal and chemical stability assessment via thermo gravimetric analysis and Fenton test, respectively. The resulting high molecular weight polymer showed excellent thermal and chemical stability. Phosphoric acid doped 6F‐PBI membranes were prepared using the PPA process. The physiochemical properties of phosphoric acid doped membranes were characterized by measuring the phosphoric acid doping level, mechanical properties, and proton conductivity. These membranes showed higher phosphoric acid doping levels and higher proton conductivities than the membranes prepared by the conventional membrane fabrication processes. These membranes had sufficient mechanical properties to be easily fabricated into membrane electrode assemblies (MEA) and the prepared MEAs were tested in single cell fuel cells under various conditions, with a focus on the high temperature performance and fuel impurity tolerance. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4064–4073, 2009  相似文献   

7.
The click‐coupling reaction was applied to polycondensation, to synthesize a high‐molecular weight prepolymer having benzoxazine moieties in the main chain. For the polycondensation, a bifunctional N‐propargyl benzoxazine was synthesized from bisphenol A, propargylamine, and formaldehyde. The propargyl group was efficiently used for the copper(I)‐catalyzed alkyne‐azide “click” reaction with p‐xylene‐α,α′‐diazide, to give the corresponding linear polycondensate having 1,2,3‐triazole junctions. The polycondensation proceeded in N,N‐dimethylformamide (DMF) at room temperature. By this highly efficient “click‐” polycondensation reaction, the benzoxazine ring in the monomer was successfully introduced into the polymer main chain without any side reaction. The obtained polymer (=prepolymer) underwent thermal crosslinking to afford the corresponding product, which was insoluble in a wide range of organic solvents and exhibited higher thermal stability than the polymer before crosslinking. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2316–2325, 2008  相似文献   

8.
Catalyst and temperature driven melt polycondensation reaction was developed for natural L‐amino acid monomers to produce new classes of poly(ester‐urethane)s. Wide ranges of catalysts from alkali, alkali earth metal, transition metal and lanthanides were developed for the condensation of amino acid monomers with diols to yield poly(ester‐urethane)s. A‐B Diblock and A‐B‐A triblock species were obtained by carefully choosing mono‐ or diols in model reactions. More than two dozens of transition metal and lanthanide catalysts were identified for the polycondensation to yield high molecular weight poly(ester‐urethane)s. Theoretical studies revealed that the carbonyl carbon in ester possessed low electron density compared to the carbonyl carbon in urethane which driven the thermo‐selective polymerization process. Optical purity of the L‐amino acid residues in the melt polycondensation process was investigated using D‐ and L‐isomers and the resultant products were analyzed by chiral‐HPLC and CD spectroscopy. CD analysis revealed that the amino acid based polymers were self‐assembled as β‐sheet and polyproline type II secondary structures. Electron and atomic force microscopic analysis confirmed the formation of helical nano‐fibrous morphology in poly(ester‐urethane)s. The newly developed melt polycondensation process is very efficient and optimized for wide range of catalysts to produce diverse polymer structures from natural L‐amino acids. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1065–1077  相似文献   

9.
The reversible addition fragmentation chain transfer (RAFT) polymerization of five active ester monomers based on 4‐vinylbenzoic acid had been investigated. Pentafluorophenyl 4‐vinylbenzoate could be polymerized under RAFT conditions yielding polymers with very good control over molecular weight and narrow molecular weight distributions. Following the synthesis of diblock copolymers consisting of polystyrene, polypentafluorostyrene, poly(4‐octylstyrene), or poly(4‐acetoxystyrene) as an inert block and poly(pentafluorophenyl 4‐vinylbenzoate) as a reactive block was successfully performed. The diblock copolymer poly(pentafluoro styrene)‐block‐poly(pentafluorophenyl 4‐vinylbenzoate) had been analyzed by 19F NMR spectroscopy in solution, demonstrating the synthetic potential of pentafluorophenyl 4‐vinylbenzoate as an extremely valuable monomer for the synthesis of highly functionalized polymeric architectures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1696–1705, 2009  相似文献   

10.
A series of wholly aromatic sulfonated poly(ether amide)s (SPEAs) containing a sulfonic acid group on the dicarbonyl aromatic ring were prepared via a polycondensation reaction of sulfonated terephthalic acid (STA), terephthalic acid (TA), and aromatic diamine monomers. The degree of sulfonation was readily controlled by adjusting the monomer feed ratio of STA and TA in the polymerization process, and randomly sulfonated polymers with an ion exchange capacity (IEC) of 1.0–1.8 mequiv/g were prepared using this protocol. The chemical structures of randomly sulfonated polymers were characterized using NMR and FT‐IR spectroscopies. Gel permeation chromatography analysis of SPEAs indicated the formation of high‐molecular‐weight sulfonated polymer. Tough and flexible SPEA membranes were obtained from solution of N,N‐dimethylacetamide, and thermogravimetric analysis of these membranes showed a high degree of thermal stability. Compared with previously reported sulfonated aromatic polyamides, these new SPEAs showed a significantly lower water uptake of 10–30%. In proton conductivity measurements, ODA‐SPEA‐70 (IEC = 1.80 mequiv/g), which was obtained from polycondensation of 4,4′‐oxydianiline and 70 mol % STA, showed a comparable proton conductivity (105 mS/cm) to that of Nafion 117 at 80 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 485–496, 2009  相似文献   

11.
The 1:1 stoichiometric salt monomer composed of squaric acid and bis(4‐aminophenyl) ether was successfully prepared and subjected to solid‐state thermal polycondensation under ordinary or high pressure, giving quite readily the aromatic polysquaramide with moderately high molecular weight. The polysquaramide formed was actually the random copolymer consisting of two component polymers, one of the main component being the polymer with a quasi‐aromatic mesoionic structure. The aromatic polysquaramide was crystalline and had a glass‐transition temperature of 245 °C, with an initial weight‐loss temperature of 400 °C in nitrogen. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2648–2655, 2002  相似文献   

12.
New poly(aryl‐ethynylene) polymers of tuned rigidity/flexibility were synthesized by a palladium‐catalyzed polycondensation. The Sonogashira–Hagihara‐type coupling reaction of 2,5‐diethynyl‐4‐dodecyltoluene with 2,5‐ and/or 3,5‐dibromopyridine led to polymers of different rigidity/flexibility simply by varying the ratio of 2,5‐ to 3,5‐dibromopyridine charged in the polycondensation reaction. The ratio of para–meta linkages at the pyridine moiety in the polymer backbone was determined by NMR spectroscopy. The combination of molecular weight data obtained from vapor pressure osmometry and the use of oligomeric model compounds allowed us to establish a polymer‐specific gel permeation chromatography calibration. Information about the molecular conformation of the polymers in solution were obtained by small‐angle X‐ray scattering (SAXS) experiments. The glass‐transition and melting temperatures varied systematically with the degree of rigidity/flexibility and could be directly related to the conformational changes as reflected from the SAXS data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1919–1933, 2004  相似文献   

13.
The acid‐catalyzed controlled hydrolytic polycondensation of tetraethoxysilane (TEOS) provided polyethoxysiloxanes with weight‐average molecular weights of 2300–11,700, which depended on the reaction molar ratios of the water, catalyst, and solvent to TEOS. They were soluble in common organic solvents and stable to self‐condensation and were characterized with high silica contents of up to 67%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2250–2255, 2003  相似文献   

14.
A bisphenol bearing pendant maleimide group, namely, N‐maleimidoethyl‐3, 3‐bis(4‐hydroxyphenyl)‐1‐isobenzopyrrolidone (PPH‐MA) was synthesized starting from phenolphthalein. Aromatic (co)polyesters bearing pendant maleimide groups were synthesized from PPH‐MA and aromatic diacid chlorides, namely, isophthaloyl chloride (IPC), terephthaloyl chloride (TPC), and 50:50 mol % mixture of IPC and TPC by low temperature solution polycondensation technique. Copolyesters were also synthesized by polycondensation of different molar proportions of PPH‐MA and bisphenol A with IPC. Inherent viscosities and number‐average molecular weights of aromatic (co)polyesters were in the range of 0.52–0.97 dL/g and 20,200–32,800 g/mol, respectively indicating formation of medium to reasonably high‐molecular‐weight polymers. 13C NMR spectral analysis of copolyesters revealed the formation of random copolymers. The 10% weight loss temperature of (co)polyesters was found in the range 470–484 °C, indicating their good thermal stability. A selected aromatic polyester bearing pendant maleimide groups was chemically modified via thiol‐maleimide Michael addition reaction with two representative thiol compounds, namely, 4‐chlorothiophenol and 1‐adamantanethiol to yield post‐modified polymers in a quantitative manner. Additionally, it was demonstrated that polyester containing pendant maleimide groups could be used to form insoluble crosslinked gel in the presence of a multifunctional thiol crosslinker. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 630–640  相似文献   

15.
The bulk polycondensation of L ‐aspartic acid (ASP) with an acid catalyst under batch and continuous conditions was established as a preparative method for producing poly(succinimide) (PSI). Although sulfuric acid, p‐toluenesulfonic acid, and methanesulfonic acid were effective at producing PSI in a high conversion of ASP, o‐phosphoric acid was the most suitable catalyst for yielding PSI with a high weight‐average molecular weight (Mw) in a quantitative conversion; that is, the Mw value was 24,000. For the continuous process using a twin‐screw extruder at 3.0 kg · h−1 of the ASP feed rate, the conversion was greater than 99%, and the Mw value was 23,000 for the polycondensation with 10 wt % o‐phosphoric acid at 260°C. Sodium polyaspartate (PASP‐Na) originating from the acid‐catalyzed polycondensation exhibited high biodegradability and calcium‐ion‐chelating ability. The total organic carbon value was 86 ∼ 88%, and 100 g of PASP‐Na chelated with 5.5 ∼ 5.6 g of calcium ion, which was similar to the value for PASP‐Na from the acid‐catalyzed polycondensation with a mixed solvent © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 117–122, 2000  相似文献   

16.
Ionic liquids (ILs) are often considered green solvents capable of replacing traditional organic solvents and have been extensively studied in materials chemistry and catalysis. In this study, the direct polycondensation of N,N′‐(4,4′‐oxydiphthaloyl)‐bis‐L ‐phenylalanine diacid with various aromatic diamines was performed in IL media. The influence of various reaction parameters, including the nature of the IL cations and anions, the monomer structures, the reaction temperature, and the reaction time, on the yields and inherent viscosities of the resulting optically active poly(amide imide)s (PAIs) were investigated. Direct polycondensation successfully preceded in ILs and triphenyl phosphite (a condensing agent) without any additional extra components, such as LiCl and pyridine, which are used in similar reactions in ordinary molecular solvents. Therefore, ILs can act as both solvents and catalysts. Various high‐molecular‐weight, optically active PAIs were obtained in high yields with inherent viscosities ranging from 0.54 to 0.88 dL/g. This method was also compared with three other classical methods for the polycondensation of the aforementioned monomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6545–6553, 2005  相似文献   

17.
A novel class of carbazole polymers, nitrogen‐linked poly(2,7‐carbazole)s, was synthesized by polycondensation between two bifunctional monomers using the palladium‐catalyzed amination reaction. The polymers were characterized by 1H NMR, Infrared, Gel permeation chromatography, and MALDI‐TOF MS and it was revealed that the combination of the monomer structures is important for producing high molecular weight polymers. Thermal analysis indicated a good thermal stability with high glass transition temperatures, e.g., 138 °C for the higher molecular weight polymer P2 . To pursue the application possibilities of these polymers, their optical properties and energy levels were investigated by UV‐Vis absorption and fluorescence spectra as well as their electrochemical characteristics. Although the blue light emission was indeed observed for all polymers in solution, the quantum yields were very low and the solid films were not fluorescent. On the other hand, the HOMO levels of the polymers estimated from the onset potentials for the first oxidation in the solid thin films were relatively high in the range of ?5.12 to ?5.20 eV. Therefore, light emitting diodes employing these polymers as a hole‐transport layer and iridium(III) complex as a triplet emitter were fabricated. The device of the nitrogen‐linked poly(2,7‐carbazole) P3 with p,p′‐biphenyl spacer, which has a higher HOMO level and a higher molecular weight, showed a much better performance than the device of P2 with m‐phenylene spacer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3880–3891, 2009  相似文献   

18.
We describe a novel method of polymerization, via the insertion of activated glycine esters into N‐salicylideneglycinato‐aquo‐copper(II) chelate ( 1 ), that uses the reactivity of the metal chelate. In the absence of 1 , a high molecular weight polyglycine was formed as a white precipitate after triethylamine was added to an N,N‐dimethylformamide solution of 4‐nitrophenyl glycinate ( 3a ). In the presence of 5 mol % 1 , however, the polymerization proceeded homogeneously. After the reaction mixture was poured into tetrahydrofuran, a condensation product of glycine was obtained. According to gel permeation chromatography analysis, the product consisted of high and low molecular weight fractions. The former and latter were obtained by self‐polycondensation and polycondensation via the insertion of 3a into 1 , respectively. So that the self‐polycondensation of activated glycinates would be depressed, 2‐chlorophenyl ( 3b ), 3‐chlorophenyl ( 3c ), 4‐chlorophenyl, and phenyl glycinates were used as less activated glycine esters. For the polymerization of 3b and 3c , the polymerization via the insertion of activated glycinates into 1 was promoted. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1504–1510, 2003  相似文献   

19.
The synthesis, characterization, and some properties of new copolyesters analogous to poly(butylene terephthalate) (PBT), based on L ‐arabinaric and galactaric acids, are described. These copolyesters were obtained by polycondensation reaction in the melt of mixtures of methyl 2,3,4‐tri‐O‐methyl‐L ‐arabinarate or methyl 2,3,4,5‐tetra‐O‐methyl‐galactarate and dimethyl terephthalate with 1,4‐butanediol. Their weight‐average molecular weights ranged between 10,000 and 34,000, with polydispersities ranging from 1.4 to 2.2. The composition of all the copolymers was analyzed by NMR, and was found to have a statistical microstructure. All these copolyesters were thermally stable, with degradation temperatures well above 300 °C. The melting temperature and crystallinity decreased in both series, and the glass transition temperature increased and decreased respectively, for the PBTGa and PBTAr series with increasing amounts of aldaric units in the copolyester chain. Only PBT‐derived copolyesters containing a maximum of 30% aldaric units showed discrete scattering characteristic of crystalline material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1168–1177, 2009  相似文献   

20.
A series of aliphatic–aromatic multiblock copolyesters consisting of poly(ethylene‐co‐1,6‐hexene terephthalate) (PEHT) and poly(L ‐lactic acid) (PLLA) were synthesized successfully by chain‐extension reaction of dihydroxyl terminated PEHT‐OH prepolymer and dihydroxyl terminated PLLA‐OH prepolymer using toluene‐2,4‐diisoyanate as a chain extender. PEHT‐OH prepolymers were prepared by two step reactions using dimethyl terephthalate, ethylene glycol, and 1,6‐hexanediol as raw materials. PLLA‐OH prepolymers were prepared by direct polycondensation of L ‐lactic acid in the presence of 1,4‐butanediol. The chemical structures, the molecular weights and the thermal properties of PEHT‐OH, PLLA‐OH prepolymers, and PEHT‐PLLA copolymers were characterized by FTIR, 1H NMR, GPC, TG, and DSC. This synthetic method has been proved to be very efficient for the synthesis of high‐molecular‐weight copolyesters (say, higher than Mw = 3 × 105 g/mol). Only one glass transition temperature was found in the DSC curves of PEHT‐PLLA copolymers, indicating that the PLLA and PEHT segments had good miscibility. TG curves showed that all the copolyesters had good thermal stabilities. The resulting novel aromatic–aliphatic copolyesters are expected to find a potential application in the area of biodegradable polymer materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5898–5907, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号