首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermo‐sensitive amphiphilic copolymers, PVCL‐PTrpAMT and PVCL‐PVP‐PTrpAMT of hydrophilic N‐vinylcaprolactam (VCL), N‐vinylpyrrolidone (NVP), and hydrophobic Nt‐Boc‐tryptophanamido‐N′‐methacryl thioureas (TrpAMT) monomers, were synthesized and characterized by 1H NMR, UV‐spectroscopy, and GPC‐MALLS. The cloud point (CP) measurement showed that hydrophobic PTrpAMT and hydrophilic PVP segments significantly altered the phase transition temperature of PVCL with comparable molecular weight in aqueous solution. The CP of PVP‐PTrpAMT solution was 38.0°C, lower by 5.0°C than that of unmodified PVCL. In the presence of phosphate buffer saline (PBS), the CP value of the PVCL polymer decreased by ~2.0°C in comparison to that of the aqueous solution. Fluorescent spectroscopy and TEM studies revealed that PVCL‐PTrpAMT and PVCL‐PVP‐PTrpAMT self‐assembled into the spherical micelles, 30–70 nm in diameter, at concentrations over their CMCs in an aqueous solution. Cytotoxicity tests demonstrated that the PVCL copolymers were not harmful to cell viability, which may favor the use of the copolymers as potential thermo‐sensitive polymers in pharmaceutical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Poly(N‐acryloxysuccinimide) (PNAS) and poly(N‐acryloxysuccinimide‐coN‐vinylpyrrolidone) (P(NAS‐co‐NVP)) of adjustable molecular weights and narrow polydispersities were prepared by nitroxide‐mediated polymerization (NMP) in N,N‐dimethylformamide in the presence of free SG1 (Ntert‐butyl‐N‐1‐diethylphosphono‐(2,2‐dimethylpropyl) nitroxide), with MAMA‐SG1 (N‐(2‐methylpropyl)‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl)‐O‐(2‐carboxylprop‐2‐yl)hydroxylamine) alkoxyamine as initiator. The reactivity ratios of NAS and NVP were determined to be rNAS = 0.12 and rNVP = 0, indicating a strong alternating tendency for the P(NAS‐co‐NVP) copolymer. NAS/NVP copolymerization was then performed from a SG1‐functionalized poly(D ,L ‐lactide) (PLA‐SG1) macro‐alkoxyamine as initiator, leading to the corresponding PLA‐b‐P(NAS‐co‐NVP) block copolymer, with similar NAS and NVP reactivity ratios as mentioned above. The copolymer was used as a surface modifier for the PLA diafiltration and nanoprecipitation processes to achieve nanoparticles in the range of 450 and 150 nm, respectively. The presence of the functional/hydrophilic P(NAS‐co‐NVP) block, and particularly the N‐succinimidyl (NS) ester moieties at the particle surface, was evidenced by ethanolamine derivatization and zeta potential measurements. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Amphiphilic fluorescent graft copolymer (PVP‐PyATAm) was successfully synthesized by the free radical copolymerizations of hydrophobic monomer N‐acryloyl‐thioureylene‐4‐(1‐pyrene)‐butyryl amide (PyATAm) with hydrophilic precursor polymers of vinyl‐functionalized poly (N‐vinylpyrrolidone) (Acryloyl‐PVP) in DMF. FT‐IR, 1H NMR, TEM, gel permeation chromatography‐multi‐angle laser light scattering, UV‐vis spectroscopy, viscometric measurement, and fluorescence spectroscopy were used to characterize this copolymer. The TEM observation showed that the copolymer PVP‐ PyATAm formed spherical micelles in an aqueous solution and the size of micelles was between 50 and 70 nm in diameter. The interaction of PVP‐PyATAm copolymer and plasmid DNA was examined by agarose gel electrophoresis and TEM. Results indicated that the copolymer–DNA complexes were self‐assembled and the size of complexes was between 90 and 120 nm in diameter. Cytotoxity studies using MTT colorimetric assays suggested good biocompatibility of PVP‐PyATAm in vitro. These results suggested the potential of this graft copolymer as gene delivery carrier. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
LI  Gang  GE  Shuli  NI  Xiaofang  DONG  Shuqing  WANG  Qingjiang  HE  Pingang  FANG  Yuzhi 《中国化学》2009,27(11):2207-2211
Copolymers of poly(vinylpyrrolidone) (PVP) and hydroxyethylcellulose (HEC) were synthesized, with PVP to HEC molar ratios of 3:1, 2:1 and 1:1. The copolymers were tested as separation media in DNA fragment separation analysis by microchip electrophoresis (MCE). Separation efficiency over 3.8×105 for 118 bp has been reached by using the bare channels without the additional polymer coating step. Under optimized separation conditions for longer read length DNA sequencing, the separation ability of the copolymers decreased with decreasing (PVP‐co‐HEC) molar ratio from 3:1 to 2:1 and 1:1. In comparison with (PVP‐co‐HEC) 1:1, the copolymer with (PVP‐co‐HEC) 3:1 ratio showed high separation efficiency. By using a 20 g·L?1 copolymer with (PVP‐co‐HEC) 3:1 ratio, ΦΧ174‐HaeIII digest DNA marker was successfully separated within 3 min.  相似文献   

5.
Classical molecular dynamics simulations were carried out to investigate the hydrophilic to hydrophobic transition of PNIPAM‐co‐PEGMA close to its lower critical solution temperature (LCST) in 1 M NaCl solution. PNIPAM‐co‐PEGMA is a copolymer of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) methacrylate (PEGMA). The copolymer consists of 38 monomer units of NIPAM with two PEGMA chains attached to the PNIAPM backbone. The PNIPAM‐co‐PEGMA was observed to go through the hydrophilic?hydrophobic conformational change for simulations at temperature slightly above its LCST. Na+ ions were found to bind strongly and directly with amide O, even more strongly with the O atoms on PEGAMS chains, whereas Cl? ions only exhibit weak interaction with the polymer. Significantly a novel caged stable metal‐organic complex involving a Na+ ion coordinated by six O atoms from the copolymer was observed after the PNIPAM‐co‐PEGMA copolymer went through conformational transition to form a hydrophobic folded structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

6.
A series of poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide) P(NIPAM‐co‐NHMA) copolymers were firstly synthesized via free radical polymerization. Then, the hydrophobic, photosensitive 2‐diazo‐1,2‐naphthoquinone (DNQ) molecules were partially and randomly grafted onto P(NIPAM‐co‐NHMA) backbone through esterification to obtain a triple‐stimuli (photo/pH/thermo) responsive copolymers of P(NIPAM‐co‐NHMA‐co‐DNQMA). UV‐vis spectra showed that the lower critical solution temperature (LCST) of P(NIPAM‐co‐NHMA) ascended with increasing hydrophilic comonomer NHMA molar fraction and can be tailored by pH variation as well. The LCST of the P(NIPAM‐co‐NHMA) went down firstly after DNQ modification and subsequently shifted to higher value after UV irradiation. Meanwhile, the phase transition profile of P(NIPAM‐co‐NHMA‐co‐DNQMA) could be triggered by pH and UV light as expected. Thus, a triple‐stimuli responsive copolymer whose solution properties could be, respectively, modulated by temperature, light, and pH, has been achieved. These stimuli‐responsive properties should be very important for controlled release delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2763–2773, 2009  相似文献   

7.
This study was related to the investigation of the chemical fixation of carbon dioxide to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer‐to‐polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl) methyl methacrylate‐co‐ethyl acrylate] [poly(DOMA‐co‐EA)] from poly(glycidyl methacrylate‐co‐ethyl acrylate) [poly(GMA‐co‐EA)] and CO2, quaternary ammonium salts showed good catalytic activity. The films of poly(DOMA‐co‐EA) with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) blends were cast from N,N′‐dimethylformamide solution. The miscibility of the blends of poly(DOMA‐co‐EA) with PMMA or PVC have been investigated both by DSC and visual inspection of the blends. The optical clarity test and DSC analysis showed that poly(DOMA‐co‐EA) containing blends were miscible over the whole composition range. The miscibility behaviors were discussed in terms of Fourier transform infrared spectra and interaction parameters based on the binary interaction model. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1472–1480, 2001  相似文献   

8.
The preparation of polyvinylpyrrolidone (PVP) microspheres in ethyl acetate by dispersion polymerization with N-vinylpyrrolidone (NVP) as initial monomer, poly(N-vinylpyrrolidone-co-vinyl acetate) (P (NVP-co-VAc)) as dispersant, and 2, 2′-azobisisobutyronitrile(AIBN) as initiator is reported. The influences of monomer concentration, dispersant concentration and initiator concentration on the size of PVP microspheres as well as the monomer conversion were studied. The structure and properties of PVP microspheres were analyzed. The results show that the prepared PVP microspheres have a mean diameter of 3-4 μm. With an increase in NVP concentration, the size and the molecular weight of the PVP microspheres as well as the monomer conversion all increase. With increasing P(NVP-co-VAc) concentrations, the PVP molecular weight and monomer conversion both increase while the size of the microspheres becomes smaller. As the concentration of AIBN increases, the microsphere size and monomer conversion increase whereas the PVP molecular weight decreases. The PVP prepared by dispersion polymerization has a crystal structure, and its molecular weight is lower compared to that prepared by solution polymerization. __________ Translated from Acta Polymerica Sinica, 2007, 11 (in Chinese)  相似文献   

9.
The effects of comb‐like amphiphilic block copolymer architectures on the physical properties such as sol‐gel transition and micellization behaviors with the change of temperature and pH were examined. Comb‐like poly((poly(ethylene glycol)‐b‐(poly(lactic acid‐co‐glycolic acid))acrylate‐co‐acrylic acid) (poly((PEG‐b‐PLGA)A‐co‐AA)) copolymers were synthesized by coupling of poly(acrylic acid) (PAA) with two different kinds of PEG‐b‐PLGA diblock copolymers to investigate the effects of the number of branches and hydrophilicity/hydrophobicity on the sol‐gel transition and micellization. The molecular weights and chemical structures were confirmed by GPC and 1H NMR. The number of PEG‐b‐PLGA branches was gradually deviated from the feed molar ratio with increasing the molecular weight and the number of branches and due to the bulkiness of PEG‐b‐PLGA. Poly[(PEG‐b‐PLGA)A‐co‐AA] aqueous solutions showed thermosensitive sol‐gel transition behavior, and the gelation took place at lower concentration with increasing the number of branches and PLGA chain length due to the increase of hydrophobicity. The temperature, at which abrupt increase of viscosity by dynamic rheometer appeared, was also in good agreement with sol‐gel transition by tube‐titling method. The CMC, calculated from UV‐Visible spectroscopy using DPH as hydrophobic dye, also decreased with increasing the number of PEG‐b‐PLGA branches and PLGA chain length with same reason. The micelle size was increased with increasing temperature at the initial stage, however, decreased with further increase of temperature, since the micelles were, first, aggregated by hydrophobic intermolecular interaction, and then fragmented by dehydration of PEG segments with increasing temperature. PH‐sensitive PAA backbone played a key role in physical properties. With decreasing pH, sol‐to‐gel transition temperature, CMC values, and micelle size were decreased because of the increase of hydrophobicity resulting form non‐ionized acrylic acid. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1287–1297, 2010  相似文献   

10.
Organic/inorganic hybrid amphiphilic block copolymer poly(methacrylate isobutyl POSS)‐b‐poly(N‐isopropylacrylamide‐co‐oligo(ethylene glycol) methyl ether methacrylate) (PMAPOSS‐b‐P(NIPAM‐co‐OEGMA)) was synthesized via reversible addition–fragmentation chain transfer polymerization. The self‐assembly behavior of this block copolymer in aqueous solution was investigated by dynamic light scattering (DLS) and transmission electron microscopy. The results indicate that the novel block copolymer can self‐assemble into spherical micelles with PMAPOSS segment as the hydrophobic part and P(NIPAM‐co‐OEGMA) segment as the hydrophilic part. The temperature‐responsive characteristics of the assemblies were tested by UV–Vis spectra and DLS. Some factors such as the concentration, molecular weight, and copolymer generation that may affect the cloud point were studied systematically. The results reveal that this copolymer exhibits a sharp and intensive lower critical solution temperature (LCST). The essentially predetermined LCST can be conveniently achieved by adjusting the content of NIPAM or OEGMA domain. In addition, these novel hybrid micelles can undergo an association/disassociation cycle with the heating and cooling of solution and the degree of reversibility displaying a tremendous concentration dependence, as a novel organic/inorganic hybrid material with distinctive virtues can be potentially used in biological and medical fields, especially in drug nanocarriers for targeted therapy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A charge-transfer-type complex formation between poly(4-vinyl-N-propylpyridinium bromide) (C3PVP), poly(4-vinyl-N-butylpyridinium bromide) (C4PVP) or poly(4-vinyl-N-benzylpyridinium chloride) (BzPVP), and indole derivatives or between polymer containing flavin mononucleotide residues and indole derivatives was studied in the presence of simple and polyelectrolytes. The association constant (K) of the complex formation with indole acetate increased in the order BzPVP > C4PVP > C3PVP, which indicated an important contribution by hydrophobic interaction. The addition of simple and polyelectrolytes decreased the association constants. This was explained by the “secondary salt effect” of the salts. The importance of the electrostatic interactions in the complexation systems was obvious. The influence of simple electrolytes on the K values was discussed theoretically according to Manning's theory.  相似文献   

12.
The differences in the polymerization abilities of N‐vinylformamide (NVF) and N‐vinylisobutyramide (NVIBA) and the synthesis of their copolymers were studied. The polymerization abilities were fairly good and quite similar to those of N‐vinyl‐ acetamide (NVA), a monomer in the same class as N‐vinylalkylamides. Since the monomer reactivity ratios were r1 = 1.08 and r2 = 0.92 (M1 = NVF, M2 = NVIBA), respectively, it is clear that the comonomers definitely were converted to random copolymers. The resulting copolymers poly(NVF‐co‐NVIBA) exhibited the cloud points sharply. The light transmittance profiles were the same as those for poly(NVIBA) although they increased from 39 °C for poly(NVIBA), with an increase in the corresponding hydrophilic NVF component. Our final objective was to produce a cloud point controlled polymer material with primary amino groups. To achieve this, we examined the hydrolysis of poly(NVF), poly(NVA), poly(NVIBA), and poly(NVF‐co‐NVIBA) to obtain poly(vinylamine) [poly(VAm)]. The hydrolytic cleavage of poly(NVF) and poly(NVA) was promoted by an increase in temperature. However, poly(NVIBA) was not cleaved appreciably. The hydrolysis of poly(NVF‐co‐NVIBA) was done under controlled conditions, and amino groups selectively were introduced to only one of two components of the copolymer. The cloud point of the hydrolyzed copolymer shifted to a higher temperature than that of the copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3674–3681, 2000  相似文献   

13.
The nonionic amphiphilic brush polymers such as poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] and poly[poly(ethylene oxide) methyl ether vinylphenyl‐b‐styrene‐b‐poly(ethylene oxide) methyl ether vinylphenyl] trithiocarbonate [P(mPEGV‐b‐St‐b‐mPEGV)‐TTC] with different monomer sequence and chemical composition are synthesized and their application as macro‐RAFT agent in the emulsion RAFT polymerization of styrene is explored. It is found that the monomer sequence in the brush polymers exerts great influence on the emulsion RAFT polymerization kinetics, and the fast polymerization with short induction period in the presence of P(mPEGV‐co‐St)‐TTC is demonstrated. Besides, the chemical composition in the brush polymer macro‐RAFT agent effect on the emulsion RAFT polymerization is investigated, and the macro‐RAFT agent with high percent of the hydrophobic PS segment leads to fast and well controlled polymerization. The growth of triblock copolymer colloids in the emulsion polymerization is checked, and it reveals that the colloidal morphology is ascribed to the hydrophobic PS block extension, and the P(mPEGV‐co‐St) block almost have no influence just on the size of the colloids. This may be the first example to study the monomer sequence and the chemical composition in the macro‐RAFT agent on emulsion RAFT polymerization, and will be useful to reveal the block copolymer particle growth. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
A series of novel pH‐ and temperature‐responsive diblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly[(L ‐glutamic acid)‐co‐(γ‐benzyl L ‐glutamate)] [P(GA‐co‐BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA‐co‐BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region. Notably, when the BLG content in P(GA‐co‐BLG) block was more than 30 mol.‐%, the diblock copolymer responded sharply to a narrow pH change in the region of pH 7.4–5.5.

  相似文献   


15.
Double hydrophilic diblock copolymer, poly(N,N‐dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide‐co‐3‐azidopropylacrylamide) (PDMA‐b‐P(NIPAM‐co‐AzPAM), containing azide moieties in one of the blocks was synthesized via consecutive reversible addition‐fragmentation chain transfer polymerization. The obtained diblock copolymer molecularly dissolves in aqueous solution at room temperature, and can further supramolecularly self‐assemble into core‐shell nanoparticles consisting of thermoresponsive P(NIPAM‐co‐AzPAM) cores and water‐soluble PDMA coronas above the lower critical solution temperature of P(NIPAM‐co‐AzPAM) block. As the micelle cores contain reactive azide residues, core crosslinking can be facilely achieved upon addition of difunctional propargyl ether via click chemistry. In an alternate approach in which the PDMA‐b‐P(NIPAM‐co‐AzPAM) diblock copolymer was dissolved in a common organic solvent (DMF), the core‐crosslinked (CCL) micelles can be fabricated via “click” crosslinking upon addition of propargyl ether and subsequent dialysis against water. CCL micelles prepared by the latter approach typically possess larger sizes and broader size distributions, compared with that obtained by the former one. In both cases, the obtained (CCL) micelles possess thermoresponsive cores, and the swelling/shrinking of which can be finely tuned with temperature, rendering them as excellent candidates as intelligent drug nanocarriers. Because of the high efficiency and quite mild conditions of click reactions, we expect that this strategy can be generalized for the structural fixation of other self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 860–871, 2008  相似文献   

16.
The synthesis of two types of isocyanate side chain containing copolymers, poly(methyl methacrylate‐co‐isocyanatoethyl methacrylate) (P(MMA‐co‐IEM)) and poly(benzyl methacrylate‐co‐isocyanatoethyl methacrylate) (P(BnMA‐co‐IEM)), which were synthesized by Cu(0)‐mediated radical polymerization, is reported. Polymerization proceeded to high conversion giving polymers of relatively narrow molar mass distributions. The incorporation of the bulky aromatic groups in the latter copolymer rendered it sufficiently stable toward hydrolysis and enabled the isolation of the product and its characterization by 1H and 13C NMR, and FTIR spectroscopy and SEC. Both P(MMA‐co‐IEM) and P(BnMA‐co‐IEM) were functionalized with dibutylamine, octylamine, and (R)‐(+)‐α‐methylbenzyl‐amine, which further proved the successful incorporation of the isocyanate groups. Furthermore, P(BnMA‐co‐IEM) was used for the fabrication of liquid core microcapsules via oil‐in‐water interfacial polymerization with diethylenetriamine as crosslinker. The particles obtained were in the size range of 10–90 µm in diameter independent of the composition of copolymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2698–2705  相似文献   

17.
The miscibility of tetramethylpolycarbonate (TMPC) blends with styrenic copolymers containing various methacrylates was examined, and the interaction energies between TMPC and methacrylate were evaluated from the phase‐separation temperatures of TMPC/copolymer blends with lattice‐fluid theory combined with a binary interaction model. TMPC formed miscible blends with styrenic copolymers containing less than a certain amount of methacrylate, and these miscible blends always exhibited lower critical solution temperature (LCST)‐type phase behavior. The phase‐separation temperatures of TMPC blends with copolymers such as poly(styrene‐co‐methyl methacrylate), poly(styrene‐co‐ethyl methacrylate), poly(styrene‐con‐propyl methacrylate), and poly(styrene‐co‐phenyl methacrylate) increase with methacrylate content, go through a maximum, and decrease, whereas those of TMPC blends with poly(styrene‐con‐butyl methacrylate) and poly(styrene‐co‐cyclohexyl methacrylate) always decrease. The calculated interaction energy for a copolymer–TMPC pair is negative and increases with the methacrylate content in the copolymer. This would seem to contradict the prediction of the binary interaction model, that systems with more favorable energetic interactions have higher LCSTs. A detailed inspection of lattice‐fluid theory was performed to explain such phase behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1288–1297, 2002  相似文献   

18.
In this study, poly(vinylidene fluoride‐co‐chlorotrifluoroethylene)‐graft‐poly(oxyethylene methacrylate), P(VDF‐co‐CTFE)‐g‐POEM, an amphiphilic comb copolymer with hydrophobic P(VDF‐co‐CTFE) backbone and hydrophilic POEM side chains at 73:27 wt % was synthesized. The POEM side chains were grafted from the P(VDF‐co‐CTFE) mainchain backbone via atom transfer radical polymerization (ATRP) using direct initiation of the chlorine atoms in CTFE units. Synthesis of microphase‐separated P(VDF‐co‐CTFE)‐g‐POEM comb copolymer was successful, as confirmed by nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM). Nanocomposite films were prepared using the comb copolymer as a template film and the in situ reduction of AgCF3SO3 precursor to silver nanoparticles under UV irradiation. Silver nanoparticles with 4–8 nm in average size were in situ created in the solid state template film, as revealed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering (WAXS). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) presented the selective incorporation and the in situ growth of silver nanoparticles within the hydrophilic POEM domains of microphase‐separated comb copolymer film. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 702–709, 2008  相似文献   

19.
We report the synthesis of new gradient fluorinated copolymers with complexing groups and soluble in supercritical carbon dioxide (scCO2). Poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate‐co‐acetoacetoxyethyl methacrylate) (poly(FDA‐co‐AAEM)) and poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate‐co‐vinylbenzylphosphonic acid diethylester) (poly(FDA‐co‐VBPDE)) gradient copolymers were synthesized by reversible addition fragmentation chain transfer polymerization in α,α,α‐trifluorotoluene. Poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate‐co‐vinylbenzylphosphonic diacid) (poly(FDA‐co‐VBPDA)) gradient copolymer was efficiently obtained by cleavage of the phosphonic ester groups of poly(FDA‐co‐VBPDE). The cloud points of these gradient copolymers in dense CO2 were measured in a variable volume view cell at temperatures between 25 and 65 °C. The gradient copolymers show very good solubility in compressed CO2 with the decreasing order: poly(FDA‐co‐AAEM) ≈ poly(FDA‐co‐VBPDE) > poly(FDA‐co‐VBPDA). Following a green chemistry strategy, poly(FDA‐co‐AAEM) gradient copolymer was successfully synthesized in scCO2 with a good control over number‐average molecular weight and composition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5448–5460, 2009  相似文献   

20.
Responsive polymers have been the focus of many studies during the past decade because of their ability to change according to environmental stimuli. In this paper, we report on the development of a method to synthesize a pH/temperature‐sensitive linear copolymer, poly(N‐isopropylacrylamide‐ co‐acrylic acid)(poly(NIPAAm‐co‐AAc)), with a molecular weight of about 106–105 Da in water using azobisisobutyronitrile (AIBN) as the initiator. The effects of the following on the lower critical solution temperature (LCST) of the copolymer and homopolymer of NIPAAm were investigated: the type of buffer salts and pH changes of test solutions, molecular weight and concentration of homopolymer/copolymer solutions, and AAc monomer molar feed ratio (mol%). The effects of different synthesis methods on the molecular weight and on the AAc content were also evaluated. The mechanism of action in environments with different pH values is discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号