首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two types of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s [P(3HB-co-3HV)s] were produced by Paracoccus denitrificans ATCC 17741 using two different feeding methods. The produced P(3HB-co-3HV)s were fractionated and the copolymer sequence distributions were analyzed by 1H and 13C NMR spectroscopy. It was found that the P(3HB-co-3HV) samples produced by conventional feeding method were statistically random copolymers. The sequence distributions of P(3HB-co-3HV) samples produced by optimization method were different from random P(3HB-co-3HV)s. The thermal properties and melting behaviors were analyzed by differential scanning calorimetry (DSC). These results demonstrated that P(3HB-co-3HV) samples produced by optimization method are close in nature to P(3HB-co-3HV)s rich in long-sequence of block 3HB units, but less in 3HV random regions. The enzymatic degradation profile of P(3HB-co-3HV) films was investigated in the presence of 3-hydroxybutyrate depolymerase from Pseudomonase lemoignei. The degradation process was observed by monitoring the time-dependent change in the weight loss of copolymer films. The surface erosion of copolymer films was qualitatively monitored by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The highest degradation rate of 2.6% per day was observed for random P(3HB-co-38%3HV) produced by conventional method. In comparison, the hydrolysis degradation rates of random P(3HB-co-3HV)s were about one time faster than those of P(3HB-co-3HV)s produced by optimization method.  相似文献   

2.
Biodegradable, triblock poly(lactide)‐block‐poly(ε‐caprolactone)‐block‐poly(lactide) (PLA‐b‐PCL‐b‐PLA) copolymers and 3‐star‐(PCL‐b‐PLA) block copolymers were synthesized by ring opening polymerization of lactides in the presence of poly(ε‐caprolactone) diol or 3‐star‐poly(ε‐caprolactone) triol as macroinitiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C‐NMR. The formation of block copolymers was confirmed by NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5363–5370, 2008  相似文献   

3.
Photoreactive and degradable hyperbranched (HB) copolymers with various 3,4‐dihydroxycinnamic acid (DHCA) compositions, poly(ε‐caprolactone)‐co‐poly(3,4‐dihydroxycinnamic acid) (PCL‐co‐PDHCA), were obtained by thermal melt‐polycondensation of PCL and DHCA. The HB structures and the branching degree (BD) of the PCL‐co‐PDHCA copolymers were confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR). The melting points (Tm) of the PCL‐co‐PDHCA copolymers changed depending on the PCL and DHCA composition by differential scanning calorimetry (DSC) measurements. Wide angle X‐ray diffraction (WXRD) analysis showed semi‐crystalline of the PCL and PCL‐co‐PDHCA polymers. The PCL‐co‐PDHCA copolymers showed good photoreactivities and fluorescent properties. Crosslinking of the cinnamoyl groups in the copolymers caused by UV irradiation affected the thermal stability and wettability slightly. Moreover, the hydrolysis experiments revealed that copolymers are facile degradable.  相似文献   

4.
The comonomer composition and its distribution have been investigated for poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(3HB‐co‐3HH)], which was bacterially synthesized by Ralstonia eutropha from coconut oil as a carbon source. Using a chloroform/heptane mixed solvent, they were fractionated into several fractions with different comonomer composition. Bacterially synthesized P(3HB‐co‐3HH)s were found to have a wide compositional distribution. Using the fractions with a narrower comonomer composition distribution, the compositional dependence of thermal properties was investigated. The differential scanning calorimetry (DSC) melting behavior of a sample of unfractionated P(3HB‐co‐3HH) did not reflect that of fractions with similar average 3HH content. It was concluded that each of the fractions affects the thermal properties of the original unfractionated P(3HB‐co‐3HH), which should therefore be considered as polymer blends.  相似文献   

5.
The synthesis of a new cyclic carbonate monomer containing an allyl group was reported and its biodegradable amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐5‐methyl‐5‐allyloxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MAC)] was synthesized by ring‐opening polymerization (ROP) of L ‐lactide (LA) and 5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxan‐2‐one (MAC) in the presence of poly (ethylene glycol) as a macroinitiator, with diethyl zinc as a catalyst. 13C NMR and 1H NMR were used for microstructure identification of the copolymers. The copolymer could form micelles in aqueous solution. The core of the micelles is built of the hydrophobic P(LA‐co‐MAC) chains, whereas the shell is set up by the hydrophilic PEG blocks. The micelles exhibited a homogeneous spherical morphology and unimodal size distribution. By using the cyclic carbonate monomer containing allyl side‐groups, crosslinking of the PEG‐b‐P(LA‐co‐MAC) inner core was possible. The adhesion and spreading of ECV‐304 cells on the copolymer were better than that on PLA films. Therefore, this biodegradable amphiphilic block copolymer is expected to be used as a biomaterial for drug delivery and tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5518–5528, 2007  相似文献   

6.
pH‐responsive methoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone) bearing pendant carboxyl groups mPEG‐b‐P(2‐CCL‐co‐6‐CCL) was synthesized based on our newly monomer benzyloxycarbonylmethly functionalized ε‐caprolactone. Their structure was confirmed by 1H NMR, 13C NMR, and Fourier transform infrared spectrum spectra. In addition, SEC results indicated that the copolymers had a relatively narrow polydispersity. WXRD and DSC demonstrated that the introduction of carboxymethyl groups had significant effect on the crystallinity of the copolymers. Furthermore, the solution behavior of mPEG‐b‐P(2‐CCL‐co‐6‐CCL) has been studied by various methods. The results indicated that mPEG‐b‐P(2‐CCL‐co‐6‐CCL) had a rich pH‐responsive behavior and the micelles could be formed by pH induction, and the mPEG‐b‐P(2‐CCL‐co‐6‐CCL) could existed as unimers, micelles or large aggregates in different pH range accordingly. The mechanism of which was supposed to depend on the counteraction between the hydrophobic interaction from PCL and the ionization of the carboxyl groups along the polymer chain. Moreover, the mPEG‐b‐P(2‐CCL‐co‐6‐CCL) copolymers displayed good biocompatibility according to the preliminary cytotoxicity study. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 188–199  相似文献   

7.
Novel biodegradable copolymers, poly(1,4‐dioxan‐2‐one‐co‐glycolide) [P(DON‐co‐GA)] containing a high proportion of 1,4‐dioxan‐2‐one (DON), were synthesized by copolymerizations of DON and glycolide (GA) at 120 °C for 16 h using stannous octoate as catalyst. Chemical composition and microstructural variation of the resulting copolymer were investigated by 1H‐ and 13C NMR and thermal properties by differential scanning calorimetry (DSC). From the 13C NMR spectra, it was observed that, apart from the expected preponderance of DON sequences, the minor component, GA, was indeed distributed at various points along the copolymer chain rather than incorporated as distinct blocks, which is consistent with a random sequence distribution. This view also was supported by the DSC results, which showed that most copolymers were amorphous except for one with a relatively high fraction of DON. The conclusion that it was a random structure rather than a statistical copolymer is discussed, using the theories about the mechanism of this type of polymerization in current as a reference. P(DON‐co‐GA) films were prepared by casting the copolymer solution in hexafluoroisopropanol (HFIP) with two concentrations of the polymeric solution (10 and 25 wt %). The in vitro hydrolytic degradation behaviors of these films were studied in phosphate buffer solution (pH = 7.4) at 37 °C and characterized by DSC, scanning electron microscopy, weight loss, and change in inherent viscosity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2558–2566, 2004  相似文献   

8.
Regioregular poly(3‐hexylthiophene)‐b‐poly(1H,1H‐dihydro perfluorooctyl methacrylate) (P3HT‐b‐PFOMA) diblock copolymers were synthesized by atom transfer radical polymerization of fluorooctyl methacrylate using bromoester terminated poly(3‐hexylthiophene) macroinitiators in order to investigate their morphological properties. The P3HT macroinitiator was previously prepared by chemical modification of hydroxy terminated P3HT. The block copolymers were well characterized by 1H NMR spectroscopy and gel permeation chromatography. Transmission electron microscopy was used to investigate the nanostructured morphology of the diblock copolymers. The block copolymers are able to undergo microphase separation and self‐assemble into well‐defined and organized nanofibrillar‐like micellar morphology. The development of the morphology of P3HT‐b‐PFOMA block copolymers was investigated after annealing in solvent vapor and also in supercritical CO2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
D ,L ‐3‐Methylglycolide (MG) was synthesized via two step reactions with a good yield (42%). It was successfully polymerized in bulk with stannous octoate as a catalyst at 110 °C. The effects of the polymerization time and catalyst concentration on the molecular weight and monomer conversion were studied. Poly(D ,L ‐lactic acid‐co‐glycolic acid) (D ,L ‐PLGA50; 50/50 mol/mol) copolymers were successfully synthesized from the homopolymerization of MG with high polymerization rates and high monomer conversions under moderate polymerization conditions. 1H NMR spectroscopy indicated that the bulk ring‐opening polymerization of MG conformed to the coordination–insertion mechanism. 13C NMR spectra of D ,L ‐PLGA50 copolymers obtained under different experimental conditions revealed that the copolymers had alternating structures of lactyl and glycolyl. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4179–4184, 2000  相似文献   

10.
Butadiene‐isoprene copolymerization with the system V(acac)3‐MAO was examined. Crystalline or amorphous copolymers were obtained depending on isoprene content. Both butadiene and isoprene units exhibit a trans‐1,4 structure and are statistically distributed along the polymer chain. Polymer microstructure, comonomer composition, and distribution along the polymer chain were determined by 13C and 1H NMR analysis. The thermal and X‐ray behaviors of the copolymers were also investigated and compared with results from solid‐state 13C NMR experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4635–4646, 2007  相似文献   

11.
The physical properties of novel sulfur‐containing biopolymers, poly[(3‐hydroxybutyrate)‐co‐(3‐mercaptopropionate)]s [P(3HB‐co‐3MP)s], have been investigated in detail by1H and 13C NMR spectroscopy, wide‐angle X‐ray diffraction (WAXD) analysis, DSC, and FT‐IR spectroscopy. Based on a solvent/non‐solvent (chloroform/heptane) fractionation method, an original P(3HB‐co‐3MP) sample with 3MP unit content of 16.3 mol‐% was fractionated into eight fractions with 3MP unit content ranging from 10.3 to 37.2 mol‐% and number‐average molecular weight from 0.4 × 105 to 2.9 × 105. The thermal and crystallization behavior were found to be greatly affected by the comonomer‐unit composition and its distribution. Furthermore, the 3MP comonomer unit was found to be included in the crystalline phase in some fractions.

  相似文献   


12.
Summary: A novel cyclic carbonate monomer 5‐methyl‐5‐(succinimide‐N‐oxycarbonyl)‐1,3‐dioxan‐2‐one (MSTC) was prepared. The copolymers of MSTC with caprolactone (CL) were further synthesized by ring‐opening copolymerization. The copolymers with amido‐amine pendent groups were obtained by aminolysis of poly(MSTC‐co‐CL) with ethylenediamine. These copolymers were characterized by IR, 1H NMR, 13C NMR spectroscopies and GPC. The hydrophilicity and degradability of the copolymers with amido‐amine pendent groups were greatly improved in comparison with the PCL homopolymer.

Hydrophilicity of PCL (1), poly(MATC‐co‐CL) (16.5:83.5) (2), and poly(MATC‐co‐CL) (29.5:70.5) (3).  相似文献   


13.
The solid‐state structures and thermal properties of melt‐crystallized films of random copolymers of (R)‐3‐hydroxybutyric acid (3HB) with different hydroxyalkanoic acids such as (R)‐3‐hydroxypentanoic acid (3HV), (R)‐3‐hydroxyhexanoic acid (3HH), medium‐chain‐length (R)‐3‐hydroxyalkanoic acids (mcl‐3HA; C8‐C12), 4‐hydroxybutyric acid (4HB), and 6‐hydroxyhexanoic acid (6HH) were characterized by means of small‐angle X‐ray scattering, differential scanning calorimetry, and optical microscopy. The randomly distributed second monomer units except for 3HV in copolyesters act as defects of P(3HB) crystal and are excluded from the P(3HB) crystalline lamellae. The lamellar thickness of copolymers decreased with an increase in either the main‐chain or the side‐chain carbon numbers of second monomer units. In addition, the growth rate of spherulites decreased with an increase in the carbon numbers of second monomer units for copolymers with an identical comonomer composition. These results indicate that the steric bulkiness of second monomer unit affects on the crystallization of 3HB segments in random copolyesters.  相似文献   

14.
Stimuli‐responsive poly[(N‐isopropylacrylamide‐co‐maleic anhydride)‐g‐poly(ethylene oxide)]/poly(ethylene imine) macrobranched macrocomplexes were synthesized by (1) the radical copolymerization of N‐isopropylacrylamide and maleic anhydride with α,α′‐azobisisobutyronitrile as an initiator in 1,4‐dioxane at 65 °C under a nitrogen atmosphere, (2) the polyesterification (grafting) of prepared poly(N‐isopropylacrylamide‐co‐maleic anhydride) containing less than 20 mol % anhydride units with α‐hydroxy‐ω‐methoxy‐poly(ethylene oxide)s having different number‐average molecular weights (Mn = 4000, 10,000, or 20,000), and (3) the incorporation of macrobranched copolymers with poly(ethylene imine) (Mn = 60,000). The composition and structure of the synthesized copolymer systems were determined by Fourier transform infrared, 1H and 13C NMR spectroscopy, and chemical and elemental analyses. The important properties of the copolymer systems (e.g., the viscosity, thermal and pH sensitivities, and lower critical solution temperature behavior) changed with increases in the molecular weight, composition, and length of the macrobranched hydrophobic domains. These copolymers with reactive anhydride and carboxylic groups were used for the stabilization of penicillin G acylase (PGA). The conjugation of the enzyme with the copolymers significantly increased the thermal stability of PGA (three times at 45 °C and two times at 65 °C). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1580–1593, 2003  相似文献   

15.
Biodegradable star‐shaped poly(ethylene glycol)‐block‐poly(lactide) copolymers were synthesized by ring‐opening polymerization of lactide, using star poly(ethylene glycol) as an initiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature. Two series of three‐ and four‐armed PEG‐PLA copolymers were synthesized and characterized by gel permeation chromatography (GPC) as well as 1H and 13C NMR spectroscopy. The polymerization under the used conditions is very fast, yielding copolymers of controlled molecular weight and tailored molecular architecture. The chemical structure of the copolymers investigated by 1H and 13C NMR indicates the formation of block copolymers. The monomodal profile of molecular weight distribution by GPC provided further evidence of controlled and defined star‐shaped copolymers as well as the absence of cyclic oligomeric species. The effects of copolymer composition and lactide stereochemistry on the physical properties were investigated by GPC and differential scanning calorimetry. For the same PLA chain length, the materials obtained in the case of linear copolymers are more viscous, whereas in the case of star copolymer, solid materials are obtained with reduction in their Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3966–3974, 2007  相似文献   

16.
Well‐defined amphiphilic multiblock copolymers PDMAEMA‐b‐P(IBMD‐co‐PDO)‐b‐PEG‐b‐P(IBMD‐co‐PDO)‐b‐PDMAEMA [PDMAEMA‐PIBMD‐PPDO‐PEG], based on poly(2‐(dimethylamino)ethyl methacrylate) block (PDMAEMA), poly(3(S)‐isobutyl‐morpholine‐2,5‐dione‐co‐p‐dioxanone) block (P(IBMD‐co‐PDO)), and poly(ethylene glycol) block (PEG) were successfully synthesized by combination of ring‐opening polymerization (using 3(S)‐isobutyl‐morpholine‐2,5‐dione and p‐dioxanone initiated by hydroxyl end of PEG) and atom transfer radical polymerization (ATRP). Furthermore, all these copolymers were characterized by 1H NMR, 13C NMR, Fourier transformed‐infrared, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis measurements. The degradation experiments showed that the molecular weight of PDMAEMA‐PIBMD‐PPDO‐PEG decreased along with degradation time. In addition, these copolymers could readily self‐assemble into nanosized microspheres in phosphate buffered solution. Ibuprofen (IBU) and doxorubicin (DOX) as a kind of combined model drugs were loaded into these microspheres by the combination of ionic interaction and hydrophobic effect. These copolymer microspheres exhibited high loading capacity (LC, up to 26.88%), encapsulation efficiency (EE, up to 61.29%), and sustained release behavior of IBU–DOX in phosphate buffered solution. The results of transmission electron microscopy and dynamic light scattering showed that the microspheres were well‐defined uniform spherical particles with average diameter less than 120 nm. Therefore, it can be envisaged that these copolymer systems are promising candidates for controlled release application. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3213–3226  相似文献   

17.
ABA triblock copolymers of L ‐lactide (LL) and ε‐caprolactone (CL), designated as PLL‐P(LL‐co‐CL)‐PLL, were synthesized via a two‐step ring‐opening polymerization in bulk using diethylene glycol and stannous octoate as the initiating system. In the first‐step reaction, an approximately 50:50 mol% P(LL‐co‐CL) random copolymer (prepolymer) was prepared as the middle (B) block. This was then chain extended in the second‐step reaction by terminal block polymerization with more L ‐lactide. The percentage yields of the triblock copolymers were in excess of 95%. The prepolymers and triblock copolymers were characterized using a combination of dilute‐solution viscometry, gel permeation chromatography (GPC), 1H‐ and 13C‐NMR, and differential scanning calorimetry (DSC). It was found that the molecular weight of the prepolymer was controlled primarily by the diethylene glycol concentration. All of the triblock copolymers had molecular weights higher than their respective prepolymers. 13C‐NMR analysis confirmed that the prepolymers contained at least some random character and that the triblock copolymers consisted of additional terminal PLL end (A) blocks. From their DSC curves, the triblock copolymers were seen to be semi‐crystalline in morphology. Their glass transition, solid‐state crystallization, and melting temperature ranges, together with their heats of melting, all increased as the PLL end (A) block length increased. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A series of gradient and block copolymers, based on 2‐(2‐methoxyethoxy)ethyl methacrylate (MEO2MA) and tert‐butyl acrylate (tBA), were synthesized by atom transfer radical polymerization (ATRP) in a first step. The MEO2MA monomer leads to the production of thermosensitive polymers, exhibiting lower critical solution temperature (LCST) at around room temperature, which could be adjusted by changing the proportion of tBA in the copolymer. In a second step, the tert‐butyl groups of tBA were hydrolyzed with trifluoroacetic acid to form the corresponding block and gradient copolymers of MEO2MA and acrylic acid (AA), which exhibited both temperature and pH‐responsive behavior. These copolymers showed LCST values strongly dependent on the pH. At acid pH, a slightly decrease of LCST with an increase of AA in the copolymer was observed. However, at neutral or basic conditions, ionization of acid groups increases the hydrophilic balance considerably raising the LCST values, which even become not observable over the temperature range under study. In the last step, these carboxylic functionalized copolymers were covalently bound to biocompatible and biodegradable films of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(HB‐co‐HHx)] obtained by casting and, previously treated with ethylenediamine (ED) to render their surfaces with amino groups. Thereby, thermosensitive surfaces of modified P(HB‐co‐HHx) could be obtained. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

20.
Low and medium molecular weight copolymers constituted by glycolide and p‐dioxanone units have been synthesized by a ring‐opening polymerization. The p‐dioxanone monomer was obtained from (2‐hydroxyethoxy)acetate or by thermal depolymerization of poly(p‐dioxanone). 1H and 13C NMR spectra were highly sensitive to the chemical sequences, which were effectively assigned by considering the data from samples with different compositions, and the acquisition of heteronuclear 1H and 13C NMR‐correlated spectra. End groups were also identified, allowing methylene protons of sequences involving up to two glycolide units to be distinguished. These data seem basic to analyze degradation products or the influence of thermal treatments in chain microstructure. Glycolide/p‐dioxanone copolymers are an interesting system because changes on chemical sequences can easily occur due to a depolymerization reaction that eliminates p‐dioxanone residues. Furthermore, depending on the polymerization conditions, the occurrence of transesterification reactions may be highly significant. These reactions have a great impact in properties such as the melting temperature and can be easily quantified by NMR spectroscopy because of the occurrence of a new chemical sequence. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号