首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hydrogen is a very effective chain‐transfer agent in propylene polymerization reactions with Ti‐based Ziegler–Natta catalysts. However, measurements of the hydrogen concentration effect on the molecular weight of polypropylene prepared with a supported TiCl4/dibutyl phthalate/MgCl2 catalyst show a peculiar effect: hydrogen efficiency in the chain transfer significantly decreases with concentration, and at very high concentrations, hydrogen no longer affects the molecular weight of polypropylene. A detailed analysis of kinetic features of chain‐transfer reactions for different types of active centers in the catalyst suggests that chain transfer with hydrogen is not merely the hydrogenolysis reaction of the Ti? C bond in an active center but proceeds with the participation of a coordinated propylene molecule. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1899–1911, 2002  相似文献   

2.
Current studies on novel, metallocenebased catalysts for the polymerization of α-olefins have far-reaching implications for the development of new materials as well as for the understanding of basic reaction mechanisms responsible for the growth of a polymer chain at a catalyst center and the control of its stereoregularity. In contrast to heterogeneous Ziegler–Natta catalysts, polymerization by a homogeneous, metallocene-based catalyst occurs principally at a single type of metal center with a defined coordination environment. This makes it possible to correlate metallocene structures with polymer properties such as molecular weight, stereochemical microstructure, crystallization behavior, and mechanical properties. Homogeneous catalyst systems now afford efficient control of regio- and stereoregularities, molecular weights and molecular weight distributions, and comonomer incorporation. By providing a means for the homo- and copolymerization of cyclic olefins, the cyclopolymerization of dienes, and access even to functionalized polyolefins, these catalysts greatly expand the range and versatility of technically feasible types of polyolefin materials. For corrigendum see DOI: 10.1002/anie.199513681  相似文献   

3.
The previously developed kinetic scheme for olefin polymerization reactions with heterogeneous Ziegler–Natta catalysts states that the catalysts have several types of active centers which have different activities, different stabilities, produce different types of polymer materials, and respond differently to reaction conditions. In the case of ethylene polymerization reactions, each type of center exhibits an unusual chemical feature: a growing polymer chain containing one ethylene unit, Ti—C2H5, is unusually stable and can decompose with the formation of the Ti—H bond. This paper examines quantitative kinetic ramifications of this chemical mechanism. Modeling of the complex kinetics scheme described in the Scheme demonstrates that it correctly and quantitatively predicts three most significant peculiarities of ethylene polymerization reactions, the high reaction order with respect to the ethylene concentration, reversible poisoning with hydrogen, and activation in the presence of α‐olefins.  相似文献   

4.
The following criteria are proposed to judge whether a coordination polymerization may be diffusion controlled or not: (1) If the number-average molecular weight and polydispersity of the polymer calculated from kinetic rate constants as a function of time agree with the experimental values, the polymerization is not diffusion controlled. (2) The polymerization may be diffusion controlled if the Thiele modulus, the ratio of the characteristic diffusion time to the characteristic reaction time, is much greater than unity; if it is much smaller than unity, the polymerization is reaction controlled. (3) If an initial linear dependence of rate of polymerization on catalyst concentration changes over to a square-root dependence, the polymerization may be diffusion limited. (4) The polymerization is likely to be diffusion limited if the instantaneous rate of polymerization is proportional to the rate of particle growth when the proportionality coefficient is the surface area of the particle. Criterion (1) is a necessary and sufficient condition as stated, as its converse is not true. All the other criteria are merely necessary but not sufficient conditions. The established Ziegler–Natta catalysts have activities too low to cause diffusion limitation; the Phillips catalyst system is likely to be diffusion limited. The polydispersity of polyolefins produced with Ziegler–Natta catalysts are not the consequence of diffusion control but are the characteristics of the catalysts in their kinetics of initiation, propagation, chain transfer, and termination.  相似文献   

5.
This article describes studies on the variables that regulate the molecular weight in ethylene polymerization using a highly active Ziegler–Natta catalyst with hydrogen for molecular weight control. The dependence of the degree of polymerization on the concentration of catalyst, cocatalyst, monomer, partial pressure of hydrogen, and temperature has been established. The rate constant for chain transfer with cocatalyst has been evaluated. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
A previously developed kinetic scheme for ethylene polymerization reactions with heterogeneous Ziegler–Natta catalysts (see Y. V. Kissin, R. I. Mink, & T. E. Nowlin, J Polym Sci Part A: Polym Chem 1999, 37, 4255 and Y. V. Kissin, R. I. Mink, T. E. Nowlin, & A. J. Brandolini, J Polym Sci Part A: Polym Chem 1999, 37, 4273, 4281) states that the catalysts have several types of active centers that have different activities and different stabilities, produce different types of polymer materials, and respond differently to reaction conditions. Each type of center produces a single polymer component (Flory component), a material with a uniform structure (copolymer composition, isotacticity, etc.) and a narrow molecular weight distribution (weight-average molecular weight/number-average molecular weight = 2.0). This article examines several previously known features of ethylene polymerization and copolymerization reactions on the basis of this mechanism. The discussed subjects include temperature and cocatalyst effects on the polymerization kinetics and molecular weight distribution of polymers and reaction parameter effects (temperature, ethylene and hydrogen partial pressures, and α-olefin and cocatalyst concentrations) on the molecular weights of Flory components. The results show that the formulation of the multicenter kinetic scheme and the development of kinetic tools necessary for the application of this scheme significantly expand our understanding of the working of heterogeneous polymerization catalysts and provide additional means for their control. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1681–1695, 2001  相似文献   

7.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   

8.
Russian Journal of Applied Chemistry - The suspension polymerization in octafluorobutane, initiated by Ziegler–Natta catalyst system, has been used to synthesize ultra-high molecular weight...  相似文献   

9.
This article proposes a method to quantify the polymerization kinetics of ethylene and α‐olefins with commercial TiCl4/MgCl2 Ziegler–Natta catalysts. The method determines the leading apparent polymerization kinetic constants for each active site in a Ziegler–Natta catalyst by simultaneously fitting the instantaneous polymerization rate, cumulative polymer yield, and polymer molecular weight distribution measured at different times during a series of semi‐batch polymerization experiments. This approach quantifies the behavior of olefin polymerization with multisite catalysts using the least number of adjustable parameters needed to consistently model polymerization kinetics and polymer microstructural data.

  相似文献   


10.
The concentration of active centers of a high-activity magnesium chloride-supported Ziegler–Natta catalyst has been determined using three different methods. The initial active center concentration has been determined by quenching the reaction slurry with MeOT. To determine the concentration of the propagation species along the course of the polymerization the radio-tagging agent, 14CO, and the tagging agent, CS2, were used. CS2, was also investigated as a tagging agent of the growing chains, in a metallocene catalyst system. The results obtained were compared to obtain some insight about the reliability of each method and the kind of information each method can provide. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 573–585, 1998  相似文献   

11.
Kinetics of ethylene homopolymerization reactions and ethylene/1-hexene copolymerization reactions using a supported Ziegler–Natta catalyst was carried out over a broad range of reaction conditions. The kinetic data were analyzed using a concept of multicenter catalysis with different centers that respond differently to changes in reaction parameters. The catalyst contains five types of active centers that differ in the molecular weights of material they produce and in their copolymerization ability. In ethylene homopolymerization reactions, each active center has a high reaction order with respect to ethylene concentration, close to the second order. In ethylene/α-olefin copolymerization reactions, the centers that have poor copolymerization ability retain this high reaction order, whereas the centers that have good copolymerization ability change the reaction order to the first order. Hydrogen depresses activity of each type of center in the homopolymerization reactions in a reversible manner; however, the centers that copolymerize ethylene and α-olefins well are not depressed if an α-olefin is present in the reaction medium. Introduction of an α-olefin significantly increases activity of those centers, which are effective in copolymerizing it with ethylene but does not affect the centers that copolymerize ethylene and α-olefins poorly. To explain these kinetic features, a new reaction scheme is proposed. It is based on a hypothesis that the Ti—C2H5 bond in active centers has low reactivity due to the equilibrium formation of a Ti—C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4255–4272, 1999  相似文献   

12.
The effect of type and concentration of external donor and hydrogen concentration on oligomer formation and chain end distribution were studied. Bulk polymerization of propylene was carried out with two different Ziegler‐Natta catalysts at 70 °C, one a novel self‐supported catalyst (A) and the other a conventional MgCl2‐supported catalyst (B) with triethyl aluminum as cocatalyst. The external donors used were dicyclopentyl dimethoxy silane (DCP) and cyclohexylmethyl dimethoxy silane (CHM). The oligomer amount was shown to be strongly dependent on the molecular weight of the polymer. Catalyst A gave approximately 50 % lower oligomer content than catalyst B due to narrower molecular weight distribution in case of catalyst A. More n‐Bu‐terminated chain ends were found for catalyst A indicating more frequent 2,1 insertions. Catalyst A also gave more vinylidene‐terminated oligomers, suggesting that chain transfer to monomer, responsible for the vinylidene chain ends, was a more important chain termination mechanism for this catalyst, especially at low hydrogen concentration. Low site selectivity, due to low external donor concentration or use of a weak external donor (CHM), was also found to increase formation of vinylidene‐terminated oligomers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 351–358, 2010  相似文献   

13.
The study of new catalytic systems is critical in order to develop improved and cost effective polymerization processes. One of the methods to evaluate the performance of a catalytic system is by means of bench scale reactors. Despite its difference in size with large scale industrial plants, bench scale reactors have proved to be a valuable tool to understand the behavior of the catalytic system during the polymerization. In this work, a method to estimate the kinetic parameters of propylene polymerization over a conventional Ziegler Natta catalyst is evaluated. Thus, it was possible to set up a semi-empirical model to correlate the reaction yield with the polymerization time, the hydrogen content in the reactor and the reaction temperature. This model proves to be useful to evaluate the performance of a catalytic system within the range of normal operating conditions. A brief study on the particle size distribution of the products is also carried out.  相似文献   

14.
In the previous paper we calculated the most stable structure of the catalyst and cocatalyst of metallocene catalyst systems using molecular dynamics and molecular mechanics. In this paper we postulate the active site of the heterogeneous Ziegler–Natta catalyst, and analyze it by the same methods to clarify the main factors that control the activity and molecular weight distribution of the heterogeneous catalyst systems. The roles of the external donor were also considered, and we found that the interaction energy between an external donor and the active site of the catalyst, as well as the structural factors of the external donor itself, are strongly related to both activity and molecular weight distribution. These results reveal that molecular dynamics and molecular mechanics calculations are also effective methods to screen the heterogeneous catalyst systems.  相似文献   

15.
The Ziegler–Natta‐catalyzed polymerization of 1,3‐butadiene was investigated at a low aluminum alkyl/cobalt (Al/Co) ratio using two different soluble catalyst systems: cobalt(II) octanoate/diethylaluminum chloride/water and cobalt(II) octanoate/methylaluminoxane/tert‐butyl chloride. When the active‐center concentration was determined by the number‐average molecular weight technique, it was found that the percentage of active cobalt depended on the Al/Co ratio. Subsequently, an equilibrium reaction was proposed to be Co + 2Al ? CoAl2, where Co is cobalt(II) octanoate, Al is either of the aluminum alkyl‐activator species, and CoAl2 is the active catalyst. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2256–2261, 2001  相似文献   

16.
The chain transfer reaction by hydrogen in the initial stage of propene polymerization with MgCl2-supported Ziegler catalyst was studied by means of the stopped-flow polymerization. The yield and molecular weight of polypropene produced in the initial stage were not affected by hydrogen. Thus, the method was successfully applied to find the region in which hydrogen does not act as a chain transfer reagent. On the other hand, a chain transfer reaction proceeded in the initial stage of polymerization by using Zn(C2H5)2. Furthermore, when the catalyst was treated with Al(C2H5)3 before polymerization, the molecular weight of the produced polymer was decreased by using hydrogen, indicating that it acted as a chain transfer agent for the catalyst modified by pre-treatment.  相似文献   

17.
碳笼烯 60对Ziegler Nata催化剂催化苯乙烯聚合的影响洪瀚周锡煌李福绵(北京大学化学学院北京100871)关键词碳笼烯 60(C60),Ziegler Nata催化剂,配位聚合,等规聚苯乙烯C60独特的球笼形空间结构和电子结构决定了其有许...  相似文献   

18.
A hybrid polymerization system that combines the fast reaction kinetics of conventional free radical polymerization and the control of molecular weight and distribution afforded by ATRP has been developed. High‐free radical initiator concentrations in the range of 0.1–0.2 M were used in combination with a low concentration of ATRP catalyst. Conversions higher than 90% were achieved with ATRP catalyst concentrations of less than 20 ppm within 2 h for the hybrid ATRP system as compared with ATRPs where achieving such conversions would take up to 24 h. These reaction conditions lead to living polymerizations where polymer molecular weight increases linearly with monomer conversion. As in living polymerization and despite the fast rates and low ATRP catalyst concentrations, the polydispersity of the produced polymer remained below 1.30. Chain extension experiments from a synthesized macroinitiator were successful, which demonstrate the living characteristics of the hybrid ATRP process. Catalyst concentrations as low as 16 ppm were found to effectively mediate the growth of over 100 polymer chains per catalytic center, whereas at the same time negating the need for post polymerization purification given the low‐catalyst concentration. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2294–2301, 2010  相似文献   

19.
There has been continuing interest in the possible role of insoluble polymer products forming a barrier reducing rate of diffusion of monomer to the active site to cause decrease in rate of polymerization and broadening of molecular weight distribution. This possibility is more acute the higher the catalytic activity. We have now shown that diffusion limitation is unimportant for the MgCl2 support high activity Ziegler–Natta catalyst by comparing its polymerization of propylene to isotactic insoluble polypropylene and of decene-1 to isotactic soluble polydecene. The rate constant of propagation is about eight times greater for propylene while the rate constants of termination, i.e, decay of Rp, are comparable for the two monomers.  相似文献   

20.
This study focuses on gas-phase polymerization of ethylene using the titanium-based Ziegler–Natta catalysts prepared from different magnesium sources including MgCl2 (Cat A), magnesium powder (Cat B), and Mg(OEt)2 (Cat C). During polymerization, different cocatalysts were also used. It was found that Cat C with triethylaluminum as a cocatalyst exhibited the highest activity. This was likely attributed to optimal distribution of active sites on the catalyst surface. It can be observed by increased temperature in the reactor due to highly exothermic reaction during polymerization. By the way, the morphologies of the polymer obtained from this catalyst were spherical, which is more preferable. Besides the catalytic activity, crystallinity and morphology were also affected by the different magnesium sources used to prepare the catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号