首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Recent work on the role of decoherence has suggested that the decay of quantum effects is governed by a discrete set of pointer states, which affect the quantum to classical correspondence. We show that the conductance oscillations exhibited by open quantum dots are governed by a discrete set of stable quantum states which have the properties of the pointer states, and which are closely related to trapped classical orbits in the open dot.  相似文献   

3.
4.
The total correlations in a bipartite quantum state are well quantified by the quantum mutual information, the amount of which is not necessarily fully extractable by local measurements. The observable correlations are the maximal correlations that can be extracted via local measurements, and have an intuitive interpretation as a measure of classical correlations. We evaluate the observable correlations for generic two-qubit states and obtain analytical expressions in some particular cases. The intricate and subtle relationships among the total, quantum and classical correlations are illustrated in terms of observable correlations. In the course, we also disprove an intuitive conjecture of Lindblad which states that the classical correlations account for at least half of the total correlations, or equivalently, correlations are more classical than quantum.  相似文献   

5.
We establish a connection between ground states of local quantum Hamiltonians and thermal states of classical spin systems. For any discrete classical statistical mechanical model in any spatial dimension, we find an associated quantum state such that the reduced density operator behaves as the thermal state of the classical system. We show that all these quantum states are unique ground states of a universal 5-body local quantum Hamiltonian acting on a (polynomially enlarged) qubit system on a 2D lattice. The only free parameters of the quantum Hamiltonian are coupling strengths of two-body interactions, which allow one to choose the type and dimension of the classical model as well as the interaction strength and temperature. This opens the possibility to study and simulate classical spin models in arbitrary dimension using a 2D quantum system.  相似文献   

6.
We examine to what extent the correlation between two quantum observables at a mixed state can be separated into a classical and a quantum term. The nonunique decomposition of quantum mixed states into pure states makes such a separation ambiguous. We outline this fact by a simple example, which also shows that classical and quantum correlations may cancel each other out.  相似文献   

7.
The Wigner-Yanase-Dyson information is an important variant of quantum Fisher information. Two fundamental requirements concerning this notion of information content originally postulated by Wigner and Yanase are convexity and superadditivity. The former was fully established by Lieb in 1973, and led to the first proof of the strong subadditivity of quantum entropy. The latter, although widely believed to be true, was quite recently disproved by Hansen. Nevertheless, superadditivity has also been established in two extreme cases, i.e., when the states are pure or classical. In this paper, we first review a scheme to classify bipartite states into a hierarchy of classical, semi-quantum, and quantum states, which are arranged in the order of increasing quantumness. We then prove the superadditivity of the Wigner-Yanase-Dyson information for all semi-quantum states. The convexity of the Wigner-Yanase-Dyson information plays a crucial role here.  相似文献   

8.
We show that both a rigid and a nonrigid dipole can be trapped by an external uniform magnetic field in classical mechanics. The trapped states of a dipole present a nontrivial example of classical bound states embedded in a continuum (BSEC) that can be treated as analogs of quantum BSECs. For example, the classical motion of a dipole is confined to a finite region in space, though there are no classical turning points. We also examine the quantum motion of a dipole in a magnetic field and show that, for the most natural choices of the parameters (the rigid rotating dipole or the one bound by oscillator potential, uniform time-independent magnetic field, etc.), there are no quantum BSEC solutions.  相似文献   

9.
We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create "offspring" indicates that quantum Darwinism is in action.  相似文献   

10.
It seems there is a large gap between quantum cloning and classical duplication since quantum mechanics forbid perfect copies of unknown quantum states. In this paper, we prove that a classical duplication process can be realized by using a universal quantum cloning machine(QCM). A classical bit is encoded not on a single quantum state, but on a large number of single identical quantum states. Errors are inevitable when copying these identical quantum states due to the quantum no-cloning theorem. When a small part of errors are ignored, i.e., errors as the minority are automatically corrected by the majority, the fidelity of duplicated copies of classical information will approach unity infinitely. In this way, the classical bits can be duplicated precisely with a universal QCM, which presents a natural transition from quantum cloning to classical duplication. The implement of classical duplication by using QCM shines new lights on the universality of quantum mechanics.  相似文献   

11.
We study the computational difficulty of computing the ground state degeneracy and the density of states for local Hamiltonians. We show that the difficulty of both problems is exactly captured by a class which we call #BQP, which is the counting version of the quantum complexity class quantum Merlin Arthur. We show that #BQP is not harder than its classical counting counterpart #P, which in turn implies that computing the ground state degeneracy or the density of states for classical Hamiltonians is just as hard as it is for quantum Hamiltonians.  相似文献   

12.
J. Rueda 《Molecular physics》2013,111(9):1353-1369
We evaluate the dynamics of an algebraic model Hamiltonian for the vibrational motion of the water molecule. We pay special attention to the effects of the discrete symmetry of order 2 of the model. For a comparison between the quantum dynamics and the classical dynamics it is necessary to desymmetrize such quantum states which are based on types of motion which come in symmetry related pairs. For the other states based on motion invariant under the symmetry operation a desymmetrization would be meaningless. The desymmetrized quantum states show a simple connection to the guiding motions of the classical dynamics which can be used for a complete assignment of the states even though the system is not integrable in the sense of Liouville and shows chaotic behaviour in large parts of the classical phase space.  相似文献   

13.
We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded approximation error. If we allow states that are entangled within small clusters of systems but product across clusters then good approximations exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our approximations allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.  相似文献   

14.
Entanglement versus correlations in spin systems   总被引:1,自引:0,他引:1  
We consider pure quantum states of N>1 spins or qubits and study the average entanglement that can be localized between two separated spins by performing local measurements on the other individual spins. We show that all classical correlation functions provide lower bounds to this localizable entanglement, which follows from the observation that classical correlations can always be increased by doing appropriate local measurements on the other qubits. We analyze the localizable entanglement in familiar spin systems and illustrate the results on the hand of the Ising spin model, in which we observe characteristic features for a quantum phase transition such as a diverging entanglement length.  相似文献   

15.
We study quantum analogs of classical situations, i.e. quantum states possessing some specific classical attribute(s). These states seem quite generally, to have the form of gaussian density matrices. Such states can always be parametrized as thermal squeezed states (TSS). We consider the following specific cases: (a) Two beams that are built from initial beams which passed through a beam splitter cannot, classically, be distinguished from (appropriately prepared) two independent beams that did not go through a splitter. The only quantum states possessing this classical attribute are TSS. (b) The classical Cramer's theorem was shown to have a quantum version (Hegerfeldt). Again, the states here are Gaussian density matrices. (c) The special case in the study of the quantum version of Cramer's theorem, viz. when the state obtained after partial tracing is a pure state, leads to the conclusion that all states involved are zero temperature limit TSS. The classical analog here are gaussians of zero width, i.e. all distributions are δ functions in phase space.  相似文献   

16.
Xue-Yi Guo 《中国物理 B》2023,32(1):10307-010307
Quantum computers promise to solve finite-temperature properties of quantum many-body systems, which is generally challenging for classical computers due to high computational complexities. Here, we report experimental preparations of Gibbs states and excited states of Heisenberg $XX$ and $XXZ$ models by using a 5-qubit programmable superconducting processor. In the experiments, we apply a hybrid quantum-classical algorithm to generate finite temperature states with classical probability models and variational quantum circuits. We reveal that the Hamiltonians can be fully diagonalized with optimized quantum circuits, which enable us to prepare excited states at arbitrary energy density. We demonstrate that the approach has a self-verifying feature and can estimate fundamental thermal observables with a small statistical error. Based on numerical results, we further show that the time complexity of our approach scales polynomially in the number of qubits, revealing its potential in solving large-scale problems.  相似文献   

17.
We consider the problem of discriminating between two different states of a finite quantum system in the setting of large numbers of copies, and find a closed form expression for the asymptotic exponential rate at which the error probability tends to zero. This leads to the identification of the quantum generalisation of the classical Chernoff distance, which is the corresponding quantity in classical symmetric hypothesis testing. The proof relies on two new techniques introduced by the authors, which are also well suited to tackle the corresponding problem in asymmetric hypothesis testing, yielding the quantum generalisation of the classical Hoeffding bound. This has been done by Hayashi and Nagaoka for the special case where the states have full support. The goal of this paper is to present the proofs of these results in a unified way and in full generality, allowing hypothesis states with different supports. From the quantum Hoeffding bound, we then easily derive quantum Stein’s Lemma and quantum Sanov’s theorem. We give an in-depth treatment of the properties of the quantum Chernoff distance, and argue that it is a natural distance measure on the set of density operators, with a clear operational meaning.  相似文献   

18.
We study the possible influence of a not necessarily sincere arbiter on the course of classical and quantum 2×2 games and we show that this influence in the quantum case is much bigger than in the classical case. Extreme sensitivity of quantum games on initial states of quantum objects used as carriers of information in a game shows that a quantum game, contrary to a classical game, is not defined by a payoff matrix alone but also by an initial state of objects used to play a game. Therefore, two quantum games that have the same payoff matrices but begin with different initial states should be considered as different games.  相似文献   

19.
We study the electromagnetic-field tomograms for classical and quantum states. We use the violation of the positivity of entropy for the photon-probability distributions for distinguishing the classical and quantum domains. We show that the photon-probability distribution expressed in terms of optical or symplectic tomograms of the photon quantum state must be a nonnegative function, which yields the nonnegative Shannon entropy. We also show that the optical tomogram of the photon classical state provides the expression for the Shannon entropy, which can be nonpositive.  相似文献   

20.
We establish a connection between measurement-based quantum computation and the field of mathematical logic. We show that the computational power of an important class of quantum states called graph states, representing resources for measurement-based quantum computation, is reflected in the expressive power of (classical) formal logic languages defined on the underlying mathematical graphs. In particular, we show that for all graph state resources which can yield a computational speed-up with respect to classical computation, the underlying graphs—describing the quantum correlations of the states—are associated with undecidable logic theories. Here undecidability is to be interpreted in a sense similar to Gödel’s incompleteness results, meaning that there exist propositions, expressible in the above classical formal logic, which cannot be proven or disproven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号