首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This work presents a two‐grid stabilized method of equal‐order finite elements for the Stokes problems. This method only offsets the discrete pressure space by the residual of pressure on two grids to circumvent the discrete Babu?ka–Brezzi condition. The method can be done locally in a two‐grid approach without stabilization parameter by projecting the pressure onto a finite element space based on coarse mesh. Also, it leads to a linear system with minimal additional cost in implement. Optimal error estimates are obtained. Finally, some numerical simulations are presented to show stability and accuracy properties of the method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we consider an augmented velocity–pressure–stress formulation of the 2D Stokes problem, in which the stress is defined in terms of the vorticity and the pressure, and then we introduce and analyze stable mixed finite element methods to solve the associated Galerkin scheme. In this way, we further extend similar procedures applied recently to linear elasticity and to other mixed formulations for incompressible fluid flows. Indeed, our approach is based on the introduction of the Galerkin least‐squares‐type terms arising from the corresponding constitutive and equilibrium equations, and from the Dirichlet boundary condition for the velocity, all of them multiplied by stabilization parameters. Then, we show that these parameters can be suitably chosen so that the resulting operator equation induces a strongly coercive bilinear form, whence the associated Galerkin scheme becomes well posed for any choice of finite element subspaces. In particular, we can use continuous piecewise linear velocities, piecewise constant pressures, and rotated Raviart–Thomas elements for the stresses. Next, we derive reliable and efficient residual‐based a posteriori error estimators for the augmented mixed finite element schemes. In addition, several numerical experiments illustrating the performance of the augmented mixed finite element methods, confirming the properties of the a posteriori estimators, and showing the behavior of the associated adaptive algorithms are reported. The present work should be considered as a first step aiming finally to derive augmented mixed finite element methods for vorticity‐based formulations of the 3D Stokes problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In the paper, discontinuous Galerkin method is applied to simulation of incompressible free round turbulent jet using large eddy simulation with eddy viscosity approach. The solution algorithm is based on the classical projection method, but instead of the solution of the Poisson equation, a parabolic equation is advanced in pseudo‐time, which provides the pressure field ensuring the proper pressure–velocity coupling. For time and pseudo‐time integration, explicit Runge–Kutta method is employed. The computational meshes consist of hexahedral elements with flat faces. Within a given finite element, all flow variables are expressed with modal expansions of the same order (including velocity and pressure). Discretisation of the viscous terms in the Navier–Stokes equations and Laplacian in the Poisson equation is stabilised with mixed finite element approach. The correctness of the solution algorithm is verified in a commonly used test case of laminar flow in 3D lid‐driven cavity. The results of computations of the free jet are compared with experimental and numerical reference data, the latter obtained from the high‐order pseudospectral code. The statistics of centerline flow velocity – mean velocity and its fluctuations – show satisfactory agreement with the reference data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Two-phase flows driven by the interfacial dynamics are studied by tracking implicitly interfaces in the framework of the Cahn-Hilliard theory. The fluid dynamics is described by the Stokes equations with an additional source term in the momentum equation taking into account the capillary forces. A discontinuous Galerkin finite element method is used to solve the coupled Stokes/Cahn-Hilliard equations. The Cahn-Hilliard equation is treated as a system of two coupled equations corresponding to the advection-diffusion equation for the phase field and a nonlinear elliptic equation for the chemical potential. First, the variational formulation of the Cahn-Hilliard equation is presented. A numerical test is achieved showing the optimal order in error bounds. Second, the variational formulation in discontinuous Galerkin finite element approach of the Stokes equations is recalled, in which the same space of approximation is used for the velocity and the pressure with an adequate stabilization technique. The rates of convergence in space and time are evaluated leading to an optimal order in error bounds in space and a second order in time with a backward differentiation formula at the second order. Numerical tests devoted to two-phase flows are provided on ellipsoidal droplet retraction, on the capillary rising of a liquid in a tube, and on the wetting drop over a horizontal solid wall.  相似文献   

5.
In this paper we investigate the relationship between stabilized and enriched finite element formulations for the Stokes problem. We also present a new stabilized mixed formulation for which the stability parameter is derived purely by the method of weighted residuals. This new formulation allows equal‐order interpolation for the velocity and pressure fields. Finally, we show by counterexample that a direct equivalence between subgrid‐based stabilized finite element methods and Galerkin methods enriched by bubble functions cannot be constructed for quadrilateral and hexahedral elements using standard bubble functions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we present a stabilized mixed formulation for unsteady Brinkman equation. The formulation is systematically derived based on the variational multiscale formalism and the method of horizontal lines. The derivation does not need the assumption that the fine‐scale variables do not depend on the time, which is the case with the conventional derivation of multiscale stabilized formulations for transient mixed problems. An expression for the stabilization parameter is obtained in terms of a bubble function, and appropriate bubble functions for various finite elements are also presented. Under the proposed formulation, equal‐order interpolation for the velocity and pressure (which is computationally the most convenient) is stable. Representative numerical results are presented to illustrate the performance of the proposed formulation. Spatial and temporal convergence studies are also performed, and the proposed formulation performed well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We present and analyse a new mixed finite element method for the generalized Stokes problem. The approach, which is a natural extension of a previous procedure applied to quasi‐Newtonian Stokes flows, is based on the introduction of the flux and the tensor gradient of the velocity as further unknowns. This yields a two‐fold saddle point operator equation as the resulting variational formulation. Then, applying a slight generalization of the well known Babu?ka–Brezzi theory, we prove that the continuous and discrete formulations are well posed, and derive the associated a priori error analysis. In particular, the finite element subspaces providing stability coincide with those employed for the usual Stokes flows except for one of them that needs to be suitably enriched. We also develop an a posteriori error estimate (based on local problems) and propose the associated adaptive algorithm to compute the finite element solutions. Several numerical results illustrate the performance of the method and its capability to localize boundary layers, inner layers, and singularities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
10.
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

11.
A least‐squares finite element model with spectral/hp approximations was developed for steady, two‐dimensional flows of non‐Newtonian fluids obeying the Carreau–Yasuda constitutive model. The finite element model consists of velocity, pressure, and stress fields as independent variables (hence, called a mixed model). Least‐squares models offer an alternative variational setting to the conventional weak‐form Galerkin models for the Navier–Stokes equations, and no compatibility conditions on the approximation spaces used for the velocity, pressure, and stress fields are necessary when the polynomial order (p) used is sufficiently high (say, p > 3, as determined numerically). Also, the use of the spectral/hp elements in conjunction with the least‐squares formulation with high p alleviates various forms of locking, which often appear in low‐order least‐squares finite element models for incompressible viscous fluids, and accurate results can be obtained with exponential convergence. To verify and validate, benchmark problems of Kovasznay flow, backward‐facing step flow, and lid‐driven square cavity flow are used. Then the effect of different parameters of the Carreau–Yasuda constitutive model on the flow characteristics is studied parametrically. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
We discuss the use of polygonal finite elements for analysis of incompressible flow problems. It is well‐known that the stability of mixed finite element discretizations is governed by the so‐called inf‐sup condition, which, in this case, depends on the choice of the discrete velocity and pressure spaces. We present a low‐order choice of these spaces defined over convex polygonal partitions of the domain that satisfies the inf‐sup condition and, as such, does not admit spurious pressure modes or exhibit locking. Within each element, the pressure field is constant while the velocity is represented by the usual isoparametric transformation of a linearly‐complete basis. Thus, from a practical point of view, the implementation of the method is classical and does not require any special treatment. We present numerical results for both incompressible Stokes and stationary Navier–Stokes problems to verify the theoretical results regarding stability and convergence of the method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this work a finite element method for a dual‐mixed approximation of generalized Stokes problems in two or three space dimensions is studied. A variational formulation of the generalized Stokes problems is accomplished through the introduction of the pseudostress and the trace‐free velocity gradient as unknowns, yielding a twofold saddle point problem. The method avoids the explicit computation of the pressure, which can be recovered through a simple post‐processing technique. Compared with an existing approach for the same problem, the method presented here reduces the global number of degrees of freedom by up to one‐third in two space dimensions. The method presented here also represents a connection between existing dual‐mixed and pseudostress methods for Stokes problems. Existence, uniqueness, and error results for the generalized Stokes problems are given, and numerical experiments that illustrate the theoretical results are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A new stabilized finite element method is considered for the time‐dependent Stokes problem, based on the lowest‐order P1?P0 and Q1?P0 elements that do not satisfy the discrete inf–sup condition. The new stabilized method is characterized by the features that it does not require approximation of the pressure derivatives, specification of mesh‐dependent parameters and edge‐based data structures, always leads to symmetric linear systems and hence can be applied to existing codes with a little additional effort. The stability of the method is derived under some regularity assumptions. Error estimates for the approximate velocity and pressure are obtained by applying the technique of the Galerkin finite element method. Some numerical results are also given, which show that the new stabilized method is highly efficient for the time‐dependent Stokes problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
We investigate a special technique called ‘pressure separation algorithm’ (PSepA) (see Applied Mathematics and Computation 2005; 165 :275–290 for an introduction) that is able to significantly improve the accuracy of incompressible flow simulations for problems with large pressure gradients. In our numerical studies with the computational fluid dynamics package FEATFLOW ( www.featflow.de ), we mainly focus on low‐order Stokes elements with nonconforming finite element approximations for the velocity and piecewise constant pressure functions. However, preliminary numerical tests show that this advantageous behavior can also be obtained for higher‐order discretizations, for instance, with Q2/P1 finite elements. We analyze the application of this simple, but very efficient, algorithm to several stationary and nonstationary benchmark configurations in 2D and 3D (driven cavity and flow around obstacles), and we also demonstrate its effect to spurious velocities in multiphase flow simulations (‘static bubble’ configuration) if combined with edge‐oriented, resp., interior penalty finite element method stabilization techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A new semi‐staggered finite volume method is presented for the solution of the incompressible Navier–Stokes equations on all‐quadrilateral (2D)/hexahedral (3D) meshes. The velocity components are defined at element node points while the pressure term is defined at element centroids. The continuity equation is satisfied exactly within each elements. The checkerboard pressure oscillations are prevented using a special filtering matrix as a preconditioner for the saddle‐point problem resulting from second‐order discretization of the incompressible Navier–Stokes equations. The preconditioned saddle‐point problem is solved using block preconditioners with GMRES solver. In order to achieve higher performance FORTRAN source code is based on highly efficient PETSc and HYPRE libraries. As test cases the 2D/3D lid‐driven cavity flow problem and the 3D flow past array of circular cylinders are solved in order to verify the accuracy of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A finite element model to solve the incompressible Navier–Stokes equations based on the stabilization with orthogonal subscales, a predictor–corrector scheme to segregate the pressure and a nodal based implementation is presented in this paper. The stabilization consists of adding a least‐squares form of the component orthogonal to the finite element space of the convective and pressure gradient terms, which allows to deal with convection‐dominated flows and to use equal velocity–pressure interpolation. The pressure segregation is inspired in fractional step schemes, although the converged solution corresponds to that of a monolithic time integration. Finally, the nodal‐based implementation is based on an a priori calculation of the integrals appearing in the formulation and then the construction of the matrix and right‐hand side vector of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector can be constructed directly for each nodal point, without the need to loop over the elements and thus making the calculations much faster. Some issues related to this implementation for fractional step and our predictor–corrector scheme, which is the main contribution of this paper, are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Conjunctive modelling of free/porous flows provides a powerful and cost‐effective tool for designing industrial filters used in the process industry and also for quantifying surface–subsurface flow interactions, which play a significant role in urban flooding mechanisms resulting from sea‐level rise and climate changes. A number of well‐established schemes are available in the literature for simulation of such regimes; however, three‐dimensional (3D) modelling of such flow systems still presents numerical and practical challenges. This paper presents the development of a fully 3D, transient finite element model for the prediction and quantitative analyses of the hydrodynamic behaviour encountered in industrial filtrations and environmental flows represented by coupled flows. The weak‐variational formulation in this model is based on the use of C0 continuous equal‐order Lagrange polynomial functions for velocity and pressure fields represented by 3D hexahedral finite elements. A mixed UVWP finite element scheme based on the standard Galerkin technique satisfying the Ladyzhenskaya–Babuska–Brezzi stability criterion through incorporation of an artificial compressibility term in the continuity equation has been employed for the solution of coupled partial differential equations. We prove that the discretization generates unified stabilization for both the Navier–Stokes and Darcy equations and preserves the geometrical flexibility of the computational grids. A direct node‐linking procedure involving the rearrangement of the global stiffness matrix for the interface elements has been developed by the authors, which is utilized to couple the governing equations in a single model. A variety of numerical tests are conducted, indicating that the model is capable of yielding theoretically expected and accurate results for free, porous and coupled free/porous problems encountered in industrial and environmental engineering problems representing complex filtration (dead‐end and cross‐flow) and interacting surface–subsurface flows. The model is computationally cost‐effective, robust, reliable and easily implementable for practical design of filtration equipments, investigation of land use for water resource availability and assessment of the impacts of climatic variations on environmental catastrophes (i.e. coastal and urban floods). The model developed in this work results from the extension of a multi‐disciplinary project (AEROFIL) primarily sponsored by the European aerospace industries for development of a computer simulation package (Aircraft Cartridge Filter Analysis Modelling Program), which was successfully utilized and deployed for designing hydraulic dead‐end filters used in Airbus A380.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A new stable unstructured finite volume method is presented for parallel large-scale simulation of viscoelastic fluid flows. The numerical method is based on the side-centered finite volume method where the velocity vector components are defined at the mid-point of each cell face, while the pressure term and the extra stress tensor are defined at element centroids. The present arrangement of the primitive variables leads to a stable numerical scheme and it does not require any ad-hoc modifications in order to enhance the pressure–velocity–stress coupling. The log-conformation representation proposed in [R. Fattal, R. Kupferman, Constitutive laws for the matrix–logarithm of the conformation tensor, J. Non-Newtonian Fluid Mech. 123 (2004) 281–285] has been implemented in order improve the limiting Weissenberg numbers in the proposed finite volume method. The time stepping algorithm used decouples the calculation of the polymeric stress by solution of a hyperbolic constitutive equation from the evolution of the velocity and pressure fields by solution of a generalized Stokes problem. The resulting algebraic linear systems are solved using the FGMRES(m) Krylov iterative method with the restricted additive Schwarz preconditioner for the extra stress tensor and the geometric non-nested multilevel preconditioner for the Stokes system. The implementation of the preconditioned iterative solvers is based on the PETSc library for improving the efficiency of the parallel code. The present numerical algorithm is validated for the Kovasznay flow, the flow of an Oldroyd-B fluid past a confined circular cylinder in a channel and the three-dimensional flow of an Oldroyd-B fluid around a rigid sphere falling in a cylindrical tube. Parallel large-scale calculations are presented up to 523,094 quadrilateral elements in two-dimension and 1,190,376 hexahedral elements in three-dimension.  相似文献   

20.
In this paper, a consistent projection-based streamline upwind/pressure stabilizing Petrov-Galerkin (SUPG/PSPG) extended finite element method (XFEM) is presented to model incompressible immiscible two-phase flows. As the application of linear elements in SUPG/PSPG schemes gives rise to inconsistency in stabilization terms due to the inability to regenerate the diffusive term from viscous stresses, the numerical accuracy would deteriorate dramatically. To address this issue, projections of convection and pressure gradient terms are constructed and incorporated into the stabilization formulation in our method. This would substantially recover the consistency and free the practitioner from burdensome computations of most items in the residual. Moreover, the XFEM is employed to consider in a convenient way the fluid properties that have interfacial jumps leading to discontinuities in the velocity and pressure fields as well as the projections. A number of numerical examples are analyzed to demonstrate the complete recovery of consistency, the reproduction of interfacial discontinuities and the ability of the proposed projection-based SUPG/PSPG XFEM to model two-phase flows with open and closed interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号