首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

2.
《Electroanalysis》2006,18(16):1620-1626
A polyvinylchloride membrane sensor based on N,N′‐bis(salecylidene)‐1,2‐phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+‐selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10?7–3.0×10?2 M), with a detection limit of 6.0×10?7 M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2–4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples.  相似文献   

3.
《Analytical letters》2012,45(3):495-506
Abstract

A Dy(III) ion‐selective membrane sensor has been fabricated from polyvinyl chloride (PVC) matrix membrane containing a new asymmetrical Schiff's base [(E)‐N‐(2‐hydroxybenzylidene)benzohydraide] or BBH as a neutral carrier, sodium tetraphenyl borate (NaTPB) as an anionic excluder and nitrobenzene (NB) as a plasticizing solvent mediator. The membrane sensor displays linear potential response in the concentration range of 1.0×10?2–1.0×10?6 M of Dy(III). The electrode exhibits a nice Nernstian slope of 20.1±0.8 mV/decade in the pH range of 3.0–8.0. The sensor has a relatively short response time in whole concentration ranges (<20 s). The detection limit of the proposed sensor is 8.0×10?7 M (~128 ng/mL), and it can be used over a period of six weeks. The selectivity of the proposed sensor with respect to other cations, (alkali, alkaline earth, transition and heavy metal ions) and especially lanthanid ions, is excellent. The practical utility of the sensor has been demonstrated by using it as an indicator electrode in the potentiometric titration of Dy(III) with EDTA.  相似文献   

4.
《Analytical letters》2012,45(5):902-916
Abstract

A novel Pr(III) ion‐selective polyvinyl chloride (PVC) membrane sensor, based on N,N‐bis(α‐methylsalicylidene)diethylenetriamine (BMT) as a new ionophore, has been prepared and studied. The electrode showed good selectivity for Pr(III) ion with respect to most common cations, including alkali, alkaline earth, transition, and heavy metal ions. This electrode has a wide linear dynamic range from 1.0×10?6 to 1.0×10?2 M with a Nernstian slope of 19.8±0.2 mV per decade and a low detection limit of 6.5×10?7 M, in the pH range of 3.0–8.4, while response time was rapid (<15 s). As far as applications of the recommended sensor are concerned, first it was employed as an indicator electrode in the potentiometric titration of Pr(III) ions with EDTA. Second, it was effectively applied to the determination of concentration of Pr(III) ions in soil and sediment samples, and validation with CRMs.  相似文献   

5.
《Analytical letters》2012,45(6):1075-1086
Abstract

A novel plasticized membrane sensor for Ho(III) ions based on N‐(1‐thien‐2‐ylmethylene)‐1,3‐benzothiazol‐2‐amine (TBA) as a neutral carrier was prepared. The best performance was obtained with a membrane composition of 31% PVC, 61% benzyle acetate, 2% sodium tetra phenyl borate and 6% carrier. The electrode exhibits a Nernstian response for Ho(III) ions over a particular concentration range (1.0×10?5?1.0×10?2 M) with a slope of 19.7±0.2 mV decade?1. The limit of the detection is 7.0×10?6 M. The sensor has a response time of <15 s and a useful working pH range of 4.0–9.5. The proposed sensor discriminates relatively well towards Ho(III) ions with regard to common alkali, alkaline earth, and specially lanthanide ions. It was successfully applied as an indicator electrode in a potentiometric titration of Ho(III) ions with EDTA. It was also applied in determination of fluoride ions in a mouth wash preparation. The proposed sensor was applied for the determination of Ho(III) ion concentration in binary mixtures.  相似文献   

6.
《Electroanalysis》2006,18(11):1091-1096
N‐(2‐Pyridyl)‐N′‐(4‐methoxyphenyl)‐thiourea (PMPT) was found to be a suitable neutral ion carrier for the construction of a highly selective and sensitive La(III) membrane sensor. Poly(vinyl chloride) (PVC) based membranes of PMPT with potassium tetrakis (p‐chlorophenyl) borate (KTpClPB) as an anionic excluder and oleic acid (OA), dibutyl phthalate (DBP), benzyl acetate (BA) and o‐nitrophenyloctyl ether (NPOE) as plasticizing solvent mediators were constructed and investigated as La(III) membrane sensors. A membrane composed of PMPT‐PVC‐KTpClPB‐BA with the ratio 8.0 : 35.0 : 3.0 : 54.0 works well over a very wide concentration range (4.0×10?8 to 1.0×10?1 M) with a Nernstian slope of 19.6±0.2 mV per decade of activity between pH values of 4.0 and 9.0. The detection limit of the sensor was calculated to be 2.0×10?8 M (ca. 3.0 ppb). The sensor displays very good discrimination toward La(III) ions with regard to most common metal ions and lanthanide ions. The proposed sensor shows a short response time for whole concentration range (ca. 12 s). For evaluation of the analytical applicability of the La(III) sensor, it was successfully used as an indicator electrode for the titration of La(III) ions with EDTA. It was also applied to the determination of fluoride content of two mouth wash preparation samples and monitoring of La(III) ions in some binary and ternary mixtures.  相似文献   

7.
This study presents for the first time development of a highly selective and sensitive thulium(III) micro‐sensor. Theoretical calculations were conducted on a S‐N Schiff base [thiophene‐2‐carbaldehyde‐(7‐methyl‐1,3‐benzothiazol‐2‐yl) hydrazone] (TCMH) in order to obtain a clue about the tendency of TCMH to Tm(III) and some other metal ions. Then, TCMH was used as a membrane‐active component to prepare a Tm(III)‐selective polymeric membrane microelectrode. In line with the resulting data, the electrode exhibits a Nernstian response toward Tm(III) ions for a very wide concentration range (1.0×10?11–4.0×10?6 M) with a detection limit of 1.0×10?11 (ca. 1.5 ppt) and a very fast response time in the whole concentration range (<5 s). In addition, the results showed that the certain microelectrode could be applied in the pH range of 4.0–11.0 with a usage of more than one month without any considerable potential divergence.  相似文献   

8.
《Analytical letters》2012,45(10):1923-1938
Abstract

In this work, for the first time, we introduce a highly selective and sensitive lutetium(III) micro‐sensor. N‐(2‐furylmethylene) pyridine‐2,6‐diamine (FPD) was used as a membrane‐active component to prepare a highly sensitive Lu(III)‐selective polymeric membrane microelectrode. Theoretical calculations for FPD, lutetium and some other metal ions were carried out and selectivity toward Lu(III) ions was confirmed. The best performance was achieved by a membrane composed of 32% PVC, 60% o‐nitrophenyloctyl ether, 4% potassium tetrakis (p‐chlorophenyl) borate (KTpClPB) and 4% FPD. The electrode exhibits a Nernstian response for Lu(III) ions over a particular concentration range (1.0×l0?11?1.0×10?6 mol l?1) with a slope of 20.5±0.2 mV decade?1. The detection limit is 3.0×10?11 mol l?1 while the sensor presents a response time of <10 s and a useful working pH range of 4.0–10.5. As a matter of fact, the proposed sensor discriminates relatively well for Lu(III) ions in compare to common alkali, alkaline earth, heavy metals and, specially, lanthanide ions. The sensor was successfully applied as an indicator electrode in a potentiometric titration of Lu(III) ions with EDTA. In addition, it was used for determination of lutetium in some soil samples where domestic devices were stored. The proposed sensor was evaluated for Lu(III) ions determination in some binary mixtures.  相似文献   

9.
The simple PVC‐based membrane containing N,N′,N″,N′′′‐tetrakis(2‐pyridylmethyl)‐1,4,8,11‐tetraazacyclotetradecane (tpmc) as an ionophore and dibutyl phthalate as a plasticizer, directly coated on a glassy carbon electrode was examined as a new sensor for Cu2+ ions. The potential response was linear within the concentration range of 1.0×10?1–1.0×10?6 M with a Nernstian slope of 28.8 mV/decade and detection limit of 7.0×10?7 M. The electrode was used in aqueous solutions over a wide pH range (1.3–6). The sensor exhibited excellent selectivity for Cu2+ ion over a number of cations and was successfully used in its determination in real samples.  相似文献   

10.
A new chromium(III) PVC membrane sensor incorporating ptertiary‐butyl calix[4]arene as ionophore, potassium tetrakis as additive and dibutyl phthalate (DBP) as plasticizer was constructed. The electrode exhibited an excellent potentiometric response over a wide concentration range of 1.0×10?7–1.0×10?1 M with a Nernstian slope of 20±0.5 mV per decade. The detection limit was 5.0×10?8 M. The electrode showed a better performance over a pH range of 3.0–8.0, and had a short response time of about <15 s.The electrode was successfully applied to potentiometric titration of Cr (III) with EDTA and for direct determination of chromium(III) in waste water.  相似文献   

11.
《Analytical letters》2012,45(14):2710-2726
Abstract

A PVC membrane electrode for dysprosium(III) [Dy(III)] ions was constructed, having its basis on benzoxazoleguanidine (BG) as a suitable ionophore. The sensor presents a linear dynamic range of 1.0 × 10?6–1.0 × 10?1 M, with a Nernstian slope of 19.5 ± 0.4 mV decade?1 and a detection limit of 4.7 × 10?7 M. The response time is quick (less than 10 s). It can be used in the pH range of 3.3–8.4, and its duration is at least 2 mo without any considerable, noticeable potential divergence. The recommended sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, some transition, and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor also applied to the determination of concentration of Dy(III) ions in soil and sediment samples. Validation with certified reference materials (CRMs) was also carried out.  相似文献   

12.
《Analytical letters》2012,45(8):1596-1609
Abstract

An original highly selective and sensitive PVC membrane sensor, working as a Fe(III) ion selective electrode and using 4‐amino‐6‐methyl‐3‐methylmercapto‐1,2,4‐triazin‐5‐one (AMMTO) as an ionophore, has been developed. This cetain sensor demonstrated the following performance; a linear dynamic range between 1.0×10?6 and 1.0×10?1 M with a near Nernstian slope of 19.4±0.5 mV per decade; a detection limit of 6.8×10?7 M; characteristically, the best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 65.5% nitrophenyl octyl ether, 2% sodium tetraphenyl borate and 2.5% AMMTO. Furthermore, the potentiometric response of the developed electrode is independent of the solution pH in the range of 2.2–4.8. The sensor possesses the advantages of short conditioning time, fast response time (<15 s) and, especially, great selectivity towards transition and heavy metal ions and some mono, di‐ and trivalent cations. The electrode can be used for at least 9 weeks without any considerable potential divergence. It was effectively used as an indicator electrode in the potentiometric titration of Fe(III) ions with EDTA and the direct determination of Fe3+ in different water samples.  相似文献   

13.
《Electroanalysis》2005,17(22):2032-2036
We found that bis(thiophenal) pyridine‐2,6‐diamine (BPD) can be used as an excellent ion carrier to prepare a gadolinium‐selective PVC‐based membrane sensor. The use of oleic acid (OA) and potassium tetrakis(p‐chlorophenyl borate)(KTKpClPB), as anionic additives, and dibutyl phthalate (DBP), acetophenone (AP) and nitrobenzene (NB), as plasticizing solvent mediators was investigated. The best performance was observed with a membrane having the composition of 30% PVC; 62% BA; 5% BPD; and 3% KTKpClPB. The resulting sensor works well over a relatively wide concentration range (1.0×10?6–1.0×10?1 M) with a Nernstian slope of 19.4±0.4 mV per decade of gadolinium activity over a wide pH range (3.5–8.0). The limit of detection of the sensor is 7.0×10?7 M (ca. 110 ng mL?1). The proposed electrode shows excellent discriminating ability toward gadolinium ions with regard to common alkali, alkaline earth, transition, heavy metal ions, and specially, lanthanide ions. The proposed sensor was applied as an indicator electrode for titration of gadolinium ions with EDTA.  相似文献   

14.
《Electroanalysis》2005,17(20):1828-1834
A recently synthesized azao‐containing Schiff's base N,N′‐adipylbis(5‐phenylazo salicylaldehyde hydrazone) was used as a suitable neutral ion carrier in construction of a highly selective La3+‐PVC membrane electrode. The electrode exhibits a Nernstian response with a slope of 19.4 mV decade?1 over a wide concentration range (1.0×10?6–1.0×10?2 M) and a limit of detection of 4.0×10?7 M (0.05 ppm). The electrode possesses a fast response time of ca. 10 s and can be used for at least 3 months without observing any deviation. The proposed electrode revealed excellent selectivity for La3+ over a wide variety of alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.0–8.0. The practical utility of the electrode has been demonstrated by its use as an indicator electrode in the potentiometric titration of La3+ ions with EDTA and in determination of F? ion in some pharmaceutical preparations.  相似文献   

15.
A novel PVC‐based membrane sensor based on 2,6‐(p‐N,N‐dimethylaminophenyl)‐4‐phenylthiopyrylium perchlorate (DAPP) is described. The electrode exhibits a sub‐Nernstian response to 1‐(beta‐hydroxyethyl)‐2‐methyl‐5‐nitroimidazole (metronidazol) over a relatively wide concentration range (1.0 × 10?1 to 1.0 × 10?5 M) with a detection limit of 8.0 × 10?6 M. The best performance was obtained with the membrane containing 30% poly (vinyl chloride), 50% dibutyl phthalate, 7% DAPP and 13% oleic acid. It has a fast response time (< 30 s) and can be used for at least four weeks without any major deviation. The proposed sensor revealed very good selectivity for metronidazole over a wide variety of common cations, anions and amino acids and could be used in the pH range of 6.0–7.5. It was successfully used for direct determination of metronidazole in an oral synthetic antiprotozoal as an antibacterial agent, in metronidazole tablets, and metronidazole injections and metronidazole gels.  相似文献   

16.
《Analytical letters》2012,45(7):1014-1028
Abstract

In this work, we describe the construction, performance, and applications of an original ytterbium(III) sensor based on N1,N2-bis-[1-(2-hydroxy-1,2-diphenyl)ethylidene]ethanedihydrazide (BHDEH), which acts as a suitable carrier. Because it has a low detection limit of 4.2 × 10?7 M, the sensor response for the Yb(III) ion is Nernstian over a wide concentration range: four decades of concentration (1.0 × 10?6 to 1.0 × 10?2 M). The response time of the electrode is less than 10 s, it can be used in the pH range of 3.2–8.3, and its duration is at least 2 months without any considerable potential divergence. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. To investigate the sensor analytical applicability, it was tested as an indicator electrode in the potentiometric titration of Yb(III) solution with standard EDTA solution. The proposed electrode was also used to determine fluoride ions in mouthwash.  相似文献   

17.
《Electroanalysis》2004,16(12):1009-1013
A novel ion‐selective polymeric membrane sensor based on pyrylium‐4,4‐(1,4‐phenylen) bis[2,6‐bis(2‐naphthyl)]‐bis[tetrafluoroborate] (PBGNB) as an excellent sensing material is successfully developed. The electrode possesses the advantages of a very low detection limit (5.0×10?8 M), a wide working concentration range (1.0×10?8?1.0×10?1 M) and specially, a high sulfate selectivity over most common organic and inorganic anions. The sensor displays Nernstian behavior (slope of 29.5±0.5 mV per decade) in a wide pH range (3.0–8.5). It shows a short response time in the whole concentration range (ca. 10 s). The electrode was used as an indicator electrode in the potentiometric titration of sulfate ions with barium ions. The proposed sensor was successfully applied to the direct determination of salbutamol sulfate and paromomycin sulfate.  相似文献   

18.
A new PVC-membrane electrode for Co2+ ions based on N,N′-di(thiazol-2-yl)formimidamide (TF) as membrane carrier has been developed. The electrode resulted in Nernstian response (29.5?±?0.4?mV decade?1) for Co2+ ion over a wide concentration range (2.5?×?10?7 ?1.0?×?10?1?M) with a detection limit of 6.1?×?10?8?M. The sensor has a response time of about 10?s, and can be used for at least 2 months without observing any deviation from the Nernstain response. The electrode revealed good selectivity towards cobalt(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions and could be used in the pH range 2.0–7.0. The electrode was used for determination of Co2+ in real samples.  相似文献   

19.
《Electroanalysis》2004,16(11):922-927
A novel chloride PVC‐based membrane sensor based on a ruthenium(III) Schiff's base complex, as an excellent neutral carrier, has been developed. The ruthenium complex, in combination with a ketonic plasticizer and a cationic additive led to ISEs with fundamental characteristics, such as slope sensitivity, short response times and selectivity coefficients, which were sufficient for practical applications. The sensor with composition of 30% PVC, 62% benzyl acetate, 5% ruthenium(III) Schiff's base complex and 3% hexadecyltrimethyl ammonium bromide displays near‐Nernstian behavior in a wide concentration range (1.0×10?1–3.0×10?6 M with slope of ?54.5±0.5) with a detection limit of 2.0×10?6 M (71.0 ng per mL). The response of the electrode is independent on pH in the range of 4.0–10.0 and can it be used for at least ten weeks. The proposed electrode shows a very short response time (<20 s) in whole concentration range. The sensor displays high selectivity toward chloride ions over several organic and inorganic anions. It was successfully applied for the determination of chloride in serum samples. It was also used as an indicator electrode in the potentiometric titration of chloride ions with silver nitrate solution.  相似文献   

20.
2,5-Dioxo-4-imidazolidinyl was used as an excellent sensing material in the preparation of a PVC membrane for a Ce(III)-selective sensor. The electrode shows a good selectivity for the Ce(III) ion with respect to most common cations including alkali, alkaline earth, transition, and heavy metal ions. The developed sensor exhibits a wide linear response with a slope of 19.6?±?0.3 mV per decade over the concentration range of 1.0?×?10?6 to 1.0?×?10?1 M, while the illustrated detection limit is 5.7?×?10?7 M of Ce(III) ions. Moreover, it is concluded that the sensor response is pH-independent in the range of 3.1–9.8. The applications of the recommended electrode include the determination of concentration of Ce(III) ions in soil and sediment samples, validation with CRM's, and the Ce(III) ion potentiometric titration with EDTA as an indicator electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号