首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly sensitive and stable amperometric tyrosinase biosensor has been developed based on multiwalled carbon nanotube (MWCNT) dispersed in mesoporous composite films of sol–gel‐derived titania and perfluorosulfonated ionomer (Nafion). Tyrosinase was immobilized within a thin film of MWCNT–titania–Nafion composite film coated on a glassy carbon electrode. Phenolic compounds were determined by the direct reduction of biocatalytically‐liberated quinone species at ?100 mV versus Ag/AgCl (3 M NaCl) without a mediator. The present tyrosinase biosensor showed good analytical performances in terms of response time, sensitivity, and stability compared to those obtained with other biosensors based on different sol–gel matrices. Due to the large pore size of the MWCNT–titania–Nafion composite, the present biosensor showed remarkably fast response time with less than 3 s. The present biosensor responds linearly to phenol from 1.0×10?7 M to 5.0×10?5 M with an excellent sensitivity of 417 mA/M and a detection limit of 9.5×10?8 M (S/N=3). The enzyme electrode retained 89% of its initial activity after 2 weeks of storage in 50 mM phosphate buffer at pH 7.0.  相似文献   

2.
This work constructed an amperometric biosensing platform using CuO doped mesoporous silica hybrid (CuO/SBA‐15) as a carrier. The CuO/SBA‐15 showed a pair of redox peaks of Cu2+/0. Upon immobilization of tyrosinase on the hybrid, the resulting biosensor exhibited a rapid (<0.5 s) and sensitive amperometric response to phenolic compounds under the optimized conditions. The linear response to catechol ranged from 1.2×10?9 to 3.0×10?5 M. The activation energy for enzymatic reaction was calculated to be 26.6 kJ mol?1. The apparent Michaelis–Menten constants of the enzyme electrode were estimated to be 54.6, 145, 17.0, 74.8 and 633 µM for catechol, phenol, p‐cresol, m‐cresol and dopamine hydrochloride, respectively. The metal oxide doped mesoporous silica hybrid exhibited excellent performance for construction of new biosensors.  相似文献   

3.
《Electroanalysis》2005,17(1):85-88
An amperometric sensor to phenolic compound was successfully constructed by immobilizing tyrosinase on the SWNTs modified glassy carbon (GC) electrode, which was covered with Nafion film. The sensitivity of the tyrosinase‐SWNTs sensor to phenol was 155 μA/mM. The tyrosinase‐SWNTs sensor also had good response to catechol, p‐chlorophenol and m‐cresol. Furthermore, benzoic acid could be detected based on the inhibition to tyrosinase activity.  相似文献   

4.
《Analytical letters》2012,45(5):895-907
Abstract

An amperometric biosensor for the determination of phenols is proposed using a crude extract of sweet potato (Ipomoea batatas (L.) Lam.) as an enzymatic source of polyphenol oxidase (PPO; tyrosinase; catechol oxidase; EC 1.14.18.1). The biosensor is constructed by the immobilization of sweet potato crude extract with glutaraldehyde and bovine serum albumin onto an oxygen membrane. This biosensor provides a linear response for catechol, pyrogallol, phenol and p-cresol in the concentration ranges of 2.0×10?5-4.3×10?4mol L?1, 2.0×10?5-4.3×10?4 mol L?1, 2.0×10?5-4.5×10?4 mol L?1 and 2.0×10?5-4.5×10?4mol L?1, respectively. The response time was about 3–5 min for the useful response range, and the lifetime of this electrode was excellent for fifteen days (over 220 determinations for each enzymatic membrane). Application of this biosensor for the determination of phenols in industrial wastewaters is presented.  相似文献   

5.
《Electroanalysis》2006,18(16):1572-1577
An amperometric tyrosinase biosensor was developed via a simple and effective immobilization method using the self‐assembled monolayers (SAMs) technique. The organic monolayer film was first formed by the spontaneous assembly of thiolor sulfur compound (1,6‐hexanedithiol, HDT) from solution onto gold electrode. When these thiol‐rich surfaces were exposed to Au colloid, the sulfurs form strong bonds to gold nanoparticles, anchoring the clusters to the electrode substrate. After the assembly of gold nanoparticles layer, a new nano‐Au surface was obtained. Thus, the tyrosinase could be immobilized onto the electrode. The tyrosinase retained its activity well in such an immobilization matrix. The various experimental variables for the enzyme electrode were optimized. The resulting biosensor can reach 95% of steady‐state current within 10 s, and the trend in the sensitivity of different phenolic compounds was as follows: catechol>phenol>p‐cresol. In addition, the apparent Michaelis–Menten constant (K and the stability of the enzyme electrode were estimated.  相似文献   

6.
《Electroanalysis》2005,17(23):2137-2146
A screen‐printed four‐electrode sensor based on immobilization of laccase (Coriolus hirsutus), peroxidase (horseradish) and tyrosinase (mushroom) in the same array was developed for monitoring of phenols. The enzymes were immobilized onto a self‐assembled monolayer (4‐mercapto‐1‐butanol) modified gold surface via covalent attachment by epichlorohydrin coupling. The experimental conditions for simultaneous operation of the three enzymes were optimized based on catechol determination. The sensors were further applied for the amperometric detection of several substituted phenolic compounds, carried out using a single line flow‐injection system. Hydrogen peroxide served as co‐substrate for peroxidase. The limits of detection for phenols in aqueous solutions were in the micromolar range, one assay was completed in less than 5 min. The preliminary studies showed that the compatibility of the above mentioned enzyme array enabled the multielectrode biosensor to be applied to real samples including industrial wastewaters and surface waters.  相似文献   

7.
Ruan C  Li Y 《Talanta》2001,54(6):791-1103
A bienzyme biosensor based on tyrosinase and horse-radish peroxidase is described in a flow injection analysis and cyclic voltammetry for measurement of phenol. Tyrosinase and horse-radish peroxidase were immobilized on the surface of a glassy carbon electrode by bovine serum albumin and glutaric dialdehyde. Phenol was oxidized by tyrosinase and horse-radish peroxidase via catechol to o-quinone in the presence of oxygen and hydrogen peroxide. The o-quinone was reduced to produce catechol (the substrate recycling) on the electrode surface. The enhanced sensitivity of the bienzyme electrode to phenol was observed in the flow injection system comparing with tyrosinase and horse-radish peroxidase monoenzyme electrodes. The mechanisms for enhanced amperometric response to phenol of bienzyme electrode were discussed. The biosensor was used to detect alkaline phosphatase (ALP). A detection limit of 1.4×10−15 M ALP (140 zmol/100 μl) was obtained after 1 h incubation with phenyl phosphate.  相似文献   

8.
Composite solution of sol–gel‐derived titania and perfluorosulfonated ionomer (Nafion) was used as a solubilizing agent for multiwalled carbon nanotubes (CNT) as well as an encapsulation matrix for alcohol dehydrogenase (ADH) for the fabrication of a highly sensitive and stable amperometric ethanol biosensor. ADH was immobilized within a thin film of CNT–titania–Nafion composite film coated on a glassy carbon electrode. Because of the mesoporous nature of the CNT–titania–Nafion composite film, the present biosensor exhibited remarkably fast response time within 2 s. The presence of CNT in the composite film increases not only the sensitivity of the ethanol biosensor but also the long‐term stability of the biosensor. The present biosensor responds linearly to ethanol in the wide concentration ranges from 1.0×10?5 M to 3.0×10?3 M with the sensitivity of 51.6 mA M?1cm?2. The present biosensor showed good long‐term stability with 75% of its activity retained after 4 weeks of storage in 50 mM phosphate buffer at pH 7.0.  相似文献   

9.
Summary A fully integrated screening system for phenolic compounds was developed incorporating on-line solid phase extraction, fractionation and biosensor detection. Two different types of biosensors, solid graphite and carbon paste electrodes incorporating the enzyme tyrosinase, were compared and used in the screening system. Interfacing of the solid phase extraction and fractionation with the biosensor detection was given special attention since the biosensors were not compatible with the organic modifier used for desorption of phenols from the solid phase extraction step. The system was validated with conventional analytical techniques. Surface water samples from the Ebro river were spiked with 1,10, and 25g L–1 of catechol, phenol,p-cresol, respectively. Three out of seven samples were spiked and the correct samples were identified, containing phenols equivalent to the spiked concentrations.  相似文献   

10.
A new amperometric biosensor for hydrogen peroxide (H2O2) was developed by adsorbing hemoglobin (Hb) on an organic sol‐gel film. The organic sol‐gel was prepared using resorcinol and formaldehyde as monomers. This sol‐gel film shows a biocompatible microenvironment for retaining the native activity of the adsorbed Hb. The direct electron transfer between Hb and electrode is achieved. Hb adsorbed on the film shows an enzyme‐like catalytic activity for the reduction of H2O2. The reduction peak currents are proportional linearly to the concentration of hydrogen peroxide in the range of 6×10?8 to 3.6×10?6 M, with a detection limit of 2.4×10?8 M (S/N=3). This research enlarges the applications of organic sol‐gel materials in biosensor field.  相似文献   

11.
For detection of phenolic compounds in environmental water samples we propose an amperometric biosensor based on tyrosinase immobilized in titania sol-gel. The analytical characteristics toward catechol, p-cresol, phenol, p-chlorophenol, and p-methylcatechol were determined. The linear range for catechol determination was 2.2 x 10(-7)-1.3 x 10(-5) mol L(-1) with a limit of detection of 9 x 10(-8) mol L(-1) and sensitivity 2.0 x 10(3) mA mol(-1) L. The influence of sample matrix components on the electrode response was studied according to Plackett-Burman experimental design. The potential interferents Mg(2+), Ca(2+), HCO3(-), SO4(2-), and Cl(-), which are usually encountered in waters, were taken into account in the examination. Cu(2+) was also taken into account, because CuSO(4) is sometimes added to a water sample, as a preservative, before determination of phenolic compounds. It was found that among the ions tested only Mg(2+) and Ca(2+) did not directly affect the electrode response. The developed biosensor was used for determination of catechol in spring and surface water samples using the standard addition method.  相似文献   

12.
《Analytical letters》2012,45(1):183-195
Abstract

The chromatographic separation of o‐cresol, m‐cresol, and p‐cresol by using β‐cyclodextrin as a chiral reagent has been studied. Conditions for the chromatographic separation of these isomers by using the cyclodextrin in the mobile phase or bonded in the stationary phase were optimized, and both procedures provided good results for the resolution of the chromatographic peaks. The use of fluorimetric detection (λexc 275 nm λem 300 nm) allows detection and quantification limits of the µg/L for eight studied phenols by using both procedures. The determination of volatile phenols in alcoholic beverages must be carried out using the cyclodextrin in the mobile phase because of the co‐elution of phenol and ethylguaiacol with other compounds of some studied matrix.  相似文献   

13.
An amperometric biosensor based on tyrosinase immobilized in silicate/Nafion composite film has been developed for the determination of phenolic compounds. The Nafion polymer in the composite was used not only to overcome the brittleness of the pure sol-gel-derived silicate film but also to increase the long-term stability of the biosensor. Tyrosinase was immobilized by a thin film of silicate/Nafion composite on a glassy carbon electrode. Phenolic compounds were determined by the direct reduction of biocatalytically-liberated quinone species at −200 mV versus Ag/AgCl (3 M NaCl). The process parameters for the fabrication of the enzyme electrode and various experimental variables such as pH and operating potential were explored for optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 15 s. The sensitivities of the biosensor for catechol and phenol were 200 and 46 mA/M, respectively. A detection limit of 0.35 mM catechol was obtained with a signal-to-noise ratio of 3. The enzyme electrode retained 74% of its initial activity after 2 weeks of storage in 50 mM phosphate buffer at pH 7.  相似文献   

14.
《Electroanalysis》2005,17(17):1571-1577
A novel electrochemical biosensor for phenol based on immobilization of tyrosinase‐peroxidase on mesoporous silica is described. The enhanced sensitivity of the tyrosinase‐horseradish peroxidase based biosensor to phenol was observed on comparing with tyrosinase or horseradish peroxidase monoenzyme modified electrodes. Two enzymes retained their enzymatic activities for phenol determination without any mediator. The preparation conditions of the biosensor are discussed. Optimization of the experimental parameters was performed with regard to pH and operating potential. The phenol sensor exhibited a fast response of less than 10 seconds. The sensitivity of the biosensor for phenol was 14 μA μM?1 cm?2 with a linear range from 2×10?7 to 2.3×10?4 M and a detection limit of 4.1×10?9 M. The biosensor showed a good stability and reproducibility.  相似文献   

15.
《Electroanalysis》2003,15(19):1506-1512
Amperometric biosensor based on the entrapment of polyphenol oxidase within a laponite clay coating and cross‐linked by glutaraldehyde is described for catechol detection. Laponite provides a hydrophilic enzyme surrounding increasing the long term stability of the biosensor compared to the corresponding biosensors obtained by chemical cross‐linking of PPO with glutaraldehyde. Azure B, a cationic dye exchanged within the clay matrix, is used as an electron shuttle allowing the mediated detection of phenol derivatives at ?0.05 V. The detection limits obtained with the optimized biosensor configuration for catechol, p‐cresol and phenol are 1, 1 and 17 nM, respectively.  相似文献   

16.
The development of an immobilized enzyme reactor (IMER) based on tyrosinase immobilized on aminopropyl-controlled pore glass (AP-CPG) for the removal of phenols from model aqueous solutions was reported. To elucidate the influence of the substrate nature, the apparent (V'max, K'm) and the inherent (Vmax, Km) Michaelis-Menten constants were determined by Lineweaver-Burk method and the external diffusional contributions on measured enzyme activities were removed by a graphical method. The dephenolization process was realized by recycling the phenol solutions through the bioreactor connected to a chitosan trap in order to remove the colored quinone-type products of the tyrosinase reactions. The results indicated that a complete removal of phenol derivatives in the range of 150-300 min, with the exception of 60% removal for phenol reached in 400 min, was obtained. The observed sequence: cresol > 4-methylcathecol > catechol > 4-Cl-phenol phenol was in accordance to the V'max/K'm values.  相似文献   

17.
Acrylic resin/titania organic–inorganic hybrid materials were prepared by mixing titania sol produced by the sol–gel process with synthesized thermoplastic acrylic resins. The effects of the amounts of water and acid on hydrolysis and condensation of the sol–gel precursor (titanium n‐butoxide) were characterized by nuclear magnetic resonance, and their corresponding influences on the structure and properties of the hybrid films were investigated by small‐angle X‐ray scattering (SAXS), atomic force microscopy, dynamical mechanical analysis, an Instron testing machine, and ultraviolet–visible spectroscopy. SAXS indicated an open structure and nanoscale size for the titania phase of the hybrids. Higher titania content and a greater amount of water or acid in the sol–gel process resulted in titania domains that were larger size and had a more compact structure. The mechanical and UV‐shielding properties of the organic polymer obviously were improved with titania embedded. As the amount of water or acid in the sol–gel process increased, integrative mechanical properties decreased, with the amount of water having a greater impact than the amount of acid on the structure and optical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3682–3694, 2004  相似文献   

18.
Stanca SE  Popescu IC  Oniciu L 《Talanta》2003,61(4):501-507
Two different approaches, both exploiting two enzymes cooperative functioning, to enhance the sensitivity of tyrosinase (PPO) based biosensor for amperometric detection of phenols have been compared. For this purpose, one monoenzyme electrode (PPO) and two bienzyme electrodes (PPO and d-glucose dehydrogenase, GDH; PPO and horseradish peroxidase, HRP) were constructed using agar-agar gel as enzyme immobilization matrix. The biosensors responses for l-tyrosine detection were recorded at −50 mV versus saturated calomel electrode (SCE). The highest sensitivity (74 mA M−1) was observed for the PPO-GDH couple, while that recorded for PPO-HRP couple system was only 32 times higher than that measured for monoenzyme electrode (0.01 mA M−1). The ability of the PPO-, PPO-GDH-, PPO-HRP-based biosensors to assay phenols was demonstrated by quantitative determination of phenol, 1,2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 2-amino-3 (4-hydroxyphenyl) propanoic acid, 2-hydroxytoluene, 3-hydroxytoluene, 4-hydroxytoluene, 4-clorophenol, 3-clorophenol, 2-clorophenol, 4-hydroxybenzoic acid.  相似文献   

19.
A novel inorganic-organic hybrid titania sol-gel nanocomposite film was prepared to fabricate a sensitive tyrosinase biosensor for the amperometric detection of trace phenolic compounds without additional electron mediators. Acetylacetone worked as a complexing ligand to chelate with Ti atom in the synthesis process, and the pH of the titania solution could be adjusted to the value which was optimum for retaining tyrosinase activity and such a membrane was stably attached on to the surface of a glassy carbon electrode (GCE). This titania matrix could supply a good environment for enzyme loading, which resulted in a high sensitivity of 15.78 μA μM−1 cm−2 for monitoring phenols with a detection limit of 1×10−8 M at a signal-to-noise ratio of 3. The TiO2 sol-gel derived biosensor exhibited a fast response less than 10 s and a good stability for more than 2 months.  相似文献   

20.
Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds was constructed. Enzymes were immobilized in titania gel matrix. The obtained biosensor was successfully used for determination of 2,6-dimethoxyphenol, 4-tertbutylcatechol, 4-methylcatechol, 3-chlorophenol and catechol. The highest sensitivity and the widest linear range were noticed for catechol, 234 mA L mol− 1 and 2.0 × 10− 7–3.2 × 10− 5 mol/L, respectively. Detection limit for catechol, at signal-to-noise ratio of 3 was 1.3 × 10− 7 mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号