首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The translation of a sphere moving along the axis of a rotating viscous fluid is studied by the finite difference method at moderate Reynolds (up to R = 500) and Taylor (up to T = 100) numbers. Suppression of the separation is observed with increasing rotation parameter T. The drag coefficient is also presented. It is observed that the drag coefficient is less than that with no rotation in the range 0<N<0·7, where N = 2T/R is the inverse Rossby number. The same phenomenon was observed experimentally by Maxworthy in the range 0<N<0·75±0·03.  相似文献   

2.
This paper presents results obtained by employing a modified Galerkin finite element method to analyse the steady state flow of a fluid contained between two concentric, rotating spheres. The spheres are assumed to be rigid and the cavity region between the spheres is filled with an incompressible, viscous, Newtonian fluid. The inner sphere is constrained to rotate about a vertical axis with a prescribed angular velocity, while the outer sphere is fixed. Results for the circumferential function Ω, streamfunction ψ, vorticity function ζ and inner boundary torque T1 are presented for Reynolds numbers Re ? 2000 and radius ratios 0.1 ? α ? 0.9. The method proved effective for obtaining results for a wide range of radius ratios (0.1 ? α ? 0.9) and Reynolds numbers (0 ? Re ? 2000). Previous investigators who employed the finite difference method experienced difficulties in obtaining results for cases with radius ratios α ? 0.2, except for small Reynolds numbers (Re ? 100). Results for Ω, Ψ, ζ and T1 obtained in this study for radius ratios 0.8 ≤ α ≤ 0.9 verified the development of Taylor vortices reported by other investigators. The research indicates that the method may be useful for analysing other non-linear fluid flow problems.  相似文献   

3.
The motion of a sphere along the axis of rotation of an incompressible viscous fluid that is rotating as a solid mass is investigated by means of numerical methods for small values of Reynolds numbers and moderate values of Taylor numbers. The Navier-Stokes equations governing the steady, axisymmetric, viscous flow can be written as three coupled, nonlinear, elliptic partial differential equations for the stream function, vorticity and rotational velocity component. Finite difference method is used for solving the governing equations. Second order derivatives are approximated by central differences and nonlinear terms are approximated by upwind differences. Results are presented mostly in the form of graphs of the streamlines and vorticity lines. When 1/ Ro > 2.2, separation occurs and reverse flow is obtained.  相似文献   

4.
A numerical solution to the problem of the three‐dimensional fluid flow in a long rotating heterogeneous porous channel is presented. A co‐ordinate transformation technique is employed to obtain accurate solutions over a wide range of porous media Ekman number values and consequent boundary layer thicknesses. Comparisons with an approximate asymptotic solution (for large values of Ekman number) and with theoretical predictions on the validity of Taylor–Proudman theorem in porous media for small values of Ekman number show good qualitative agreement. An evaluation of the boundary layer thickness is presented and a power‐law correlation to Ekman number is shown to well‐represent the results for small values of Ekman number. The different three‐dimensional fluid flow regimes are presented graphically, demonstrating the distinct variation of the flow field over the wide range of Ekman numbers used. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
The combined effect of rotation and magnetic field is investigated for the axisymmetric flow due to the motion of a sphere in an inviscid, incompressible electrically conducting fluid having uniform rotation far upstream. The steady-state linearized equations contain a single parameter α=1/2βR m, β being the magnetic pressure number and R m the magnetic Reynolds number. The complete solution for the flow field and magnetic field is obtained and the distribution of vorticity and current density is found. The induced vorticity is O(α4) and the current density is O(R m) on the sphere.  相似文献   

6.
Axisymmetrically stable turbulent Taylor vortices between two concentric cylinders are studied with respect to the transition from vortex to wall driven turbulent production. The outer cylinder is stationary and the inner cylinder rotates. A low Reynolds number turbulence model using the kω formulation, facilitates an analysis of the velocity gradients in the Taylor–Couette flow. For a fixed inner radius, three radius ratios 0.734, 0.941 and 0.985 are employed to identify the Reynolds number range at which this transition occurs. At relatively low Reynolds numbers, turbulent production is shown to be dominated by the outflowing boundary of the Taylor vortex. As the Reynolds number increases, shear driven turbulence (due to the rotating cylinder) becomes the dominating factor. For relatively small gaps turbulent flow is shown to occur at Taylor numbers lower than previously reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N<1), the suppression of the flow‐separation is nearly independent of the conductivity of the fluid, whereas for large interaction parameters, the conductivity of the fluid strongly influences the control of flow‐separation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Summary This paper deals with the disturbance due to the steady rotation of some axisymmetric bodies in a viscous incompressible fluid of finite conductivity in which the uniform ambient flow field is collinear with the uniform magnetic field. The known results of Sowerby [1] for the couple on a rotating spheroid in a slow stream in an incompressible viscous fluid are generalized. The special case of a disk is investigated in detail. The assumed conditions of flow permit the use of Oseen's approximation. The couple is found to first order approximation in terms of R and M, where R is the Reynolds number and M the Hartmann number.On leave from Meerut College, Meerut, INDIA.  相似文献   

9.
Axisymmetric viscous, two-dimensional steady and incompressible fluid flow past a solid sphere with porous shell at moderate Reynolds numbers is investigated numerically. There are two dimensionless parameters that govern the flow in this study: the Reynolds number based on the free stream fluid velocity and the diameter of the solid core, and the ratio of the porous shell thickness to the square root of its permeability. The flow in the free fluid region outside the shell is governed by the Navier–Stokes equation. The flow within the porous annulus region of the shell is governed by a Darcy model. Using a commercially available computational fluid dynamics (CFD) package, drag coefficient and separation angle have been computed for flow past a solid sphere with a porous shell for Reynolds numbers of 50, 100, and 200, and for porous parameter in the range of 0.025–2.5. In all simulation cases, the ratio of b/a was fixed at 1.5; i.e., the ratio of outer shell radius to the inner core radius. A parametric equation relating the drag coefficient and separation point with the Reynolds number and porosity parameter were obtained by multiple linear regression. In the limit of very high permeability, the computed drag coefficient as well as the separation angle approaches that for a solid sphere of radius a, as expected. In the limit of very low permeability, the computed total drag coefficient approaches that for a solid sphere of radius b, as expected. The simulation results are presented in terms of viscous drag coefficient, separation angles and total drag coefficient. It was found that the total drag coefficient around the solid sphere as well as the separation angle are strongly governed by the porous shell permeability as well as the Reynolds number. The separation point shifts toward the rear stagnation point as the shell permeability is increased. Separation angle and drag coefficient for the special case of a solid sphere of radius ra was found to be in good agreement with previous experimental results and with the standard drag curve.  相似文献   

10.
We consider the problem of steady incompressible viscous fluid flow about a rotating sphere, with the flow specified on a sphere of finite radius, which reduces to the solution of the complete Navier-Stokes equations.The dimensionless stream functions and circulai velocity are sought in the form of series in powers of the Reynolds numbers, which converge for small values of this number. Recurrence formulas are derived for determining the coefficients of these series. The pressure, rotational resistance torque, and drag are determined. It is established that the rotating sphere has higher drag than a stationary sphere. The leading term of the series in powers of the Reynolds number for the drag and resistive torque is calculated.  相似文献   

11.
IntroductionInLES,thelargescalesintheflowarecomputedexplicitlyandthesubgrid_scales(SGS),whicharefilteredoutbyanaverageprocessoperationontheNavier_Stokesequations,aremodeled.SinceLESrequireslesscomputertimethanthedirectnumericalsimulationsandusessimplera…  相似文献   

12.
The problem of flow of a viscous fluid in a rotating channel is considered in the region of very small Rossby and Ekman numbers and moderately large Reynolds numbers. Asymptotic expressions with respect to the Ekman number are found for the velocity components and the longitudinal pressure gradient by solving a system of linear differential equations using Fourier series. The stability limits of such flow are predicted. Attention is drawn to a similarity between the velocity profiles of these flows and flows of a magnetic fluid and a fluid executing longitudinal oscillations in a fixed channel.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 11–15, January–February, 1984.  相似文献   

13.
The stability of a thermally stable stratified viscous electrically conducting shear flow is investigated in the presence of an impressed uniform aligned magnetic field. Only two-dimensional disturbances are studied in this paper because Squire's theorem does not apply in general, owing to the presence of the aligned magnetic field. The analysis is partly analytical and partly numerical. The asymptotic solutions for non-viscous fluid are first obtained analytically and they are then improved by introducing viscous and thermal diffusion terms (but only for =1) to get a uniformly valid solution. The neutral stability curves are numerically computed for a range of values of Richardson and Stuart numbers, which show that the flow is completely stabilized when a Stuart number exceeds a certain value for a given R i>0. It is shown that the combined effects of magnetic field and stratification is to make the system stable to two-dimensional disturbances at lower Stuart number than the one given by Stuart (1954) in the absence of thermal stratification.  相似文献   

14.
The stability of the Couette flow of the liquid with the power law viscosity in a wide annular gap has been investigated theoretically in this work with the aid of the method of small disturbances. The Taylor number, being a criterion of the stability, has been defined using the mean apparent viscosity value in the main flow. In the whole range of the radius ratio, R i /R o and the flow index, n, considered (R i /R o 0.5, n = 0.25–1.75 ), the critical value of the Taylor number Ta c is an increasing function of the flow index, i.e., shear thinning has destabilizing influence on the rotational flow, and dilatancy exhibits an opposite tendency.In the wide ranges of the flow index, n > 0.5, and the radius ratio, R i /R o > 0.5, the wide-gap effect on the stability limit is predicted to be almost the same for non-Newtonian fluids as for Newtonian ones. The ratio on the critical Taylor numbers for non-Newtonian and Newtonian fluids: Ta c (n) and Ta c (n = 1) obey a generalized functional dependence: Ta c (n)/Ta c (n = 1) = g(n), where g(n) is a function corresponding to the solution for the narrow gap approximation.Theoretical predictions have been compared with experimental results for pseudoplastic liquids. In the range of the radius ratio R i /R o > 0.6 the theoretical stability limit is in good agreement with the experiments, however, for R i /R o < 0.6, the critical Taylor number is considerably lower than predicted by theory.  相似文献   

15.
This paper presents the use of a parameter continuation method and a test function to solve the steady, axisymmetric incompressible Navier–Stokes equations for spherical Couette flow in a thin gap between two concentric, differentially rotating spheres. The study focuses principally on the prediction of multiple steady flow patterns and the construction of bifurcation diagrams. Linear stability analysis is conducted to determine whether or not the computed steady flow solutions are stable. In the case of a rotating inner sphere and a stationary outer sphere, a new unstable solution branch with two asymmetric vortex pairs is identified near the point of a symmetry-breaking pitchfork bifurcation which occurs at a Reynolds number equal to 789. This solution transforms smoothly into an unstable asymmetric 1-vortex solution as the Reynolds number increases. Another new pair of unstable 2-vortex flow modes whose solution branches are unconnected to previously known branches is calculated by the present two-parameter continuation method. In the case of two rotating spheres, the range of existence in the (Re 1 , Re 2 ) plane of the one and two vortex states, the vortex sizes as a function of both Reynolds numbers are identified. Bifurcation theory is used to discuss the origin of the calculated flow modes. Parameter continuation indicates that the stable states are accompanied by certain unstable states. Received 26 November 2001 and accepted 10 May 2002 Published online 30 October 2002 Communicated by M.Y. Hussaini  相似文献   

16.
The flow of steady incompressible viscous fluid rotating about the z-axis with angular velocity ω and moving with velocity u past a sphere of radius a which is kept fixed at the origin is investigated by means of a numerical method for small values of the Reynolds number Reω. The Navier–Stokes equations governing the axisymmetric flow can be written as three coupled non-linear partial differential equations for the streamfunction, vorticity and rotational velocity component. Central differences are applied to the partial differential equations for solution by the Peaceman–Rachford ADI method, and the resulting algebraic equations are solved by the ‘method of sweeps’. The results obtained by solving the non-linear partial differential equations are compared with the results obtained by linearizing the equations for very small values of Reω. Streamlines are plotted for Ψ = 0·05, 0·2, 0·5 for both linear and non-linear cases. The magnitude of the vorticity vector near the body, i.e. at z = 0·2, is plotted for Reω = 0·05, 0·24, 0·5. The correction to the Stokes drag as a result of rotation of the fluid is calculated.  相似文献   

17.
The fluid flow field within an enclosed cylindrical chamber with a rotating flat disc was calculated using a finite volume computational fluid dynamics (CFD) model and compared with particle image velocimetry (PIV) measurements. Two particular laminar cases near the Transitional flow regime were investigated: Reynolds number Re=2.5×1 4, chamber aspect ratio G (h/Rd)=0.2 and Re=4.2×104, G (h/Rd)=0.217. This enabled direct comparison with the numerical and experimental results reported by other researchers. The computational details and some major factors that affect the computed accuracy and convergence speed are also discussed in detail. PIV results containing some 4300 velocity vector points in each of seven planes for each case were obtained from the flow field parallel to the rotating disc. It was found that PIV results could be obtained in planes within the boundary layers as well as the core flow by careful use of a thin laser illumination sheet and correct choice of laser pulse separation. There was close agreement between numerical results, the present PIV measurements and other reported experimental and numerical results.  相似文献   

18.
In this paper, the problem of two-dimensional fluid flow past a stationary and rotationally oscillating equilateral triangular cylinder with a variable incident angle, Reynolds number, oscillating amplitude, and oscillating frequency is numerically investigated. The computations are carried out by using a two-step Taylor-characteristic-based Galerkin (TCBG) algorithm. For the stationary cases, simulations are conducted at various incident angles of α=0.0–60.0° and Reynolds numbers of Re=50–160. For the oscillation cases, the investigations are done at various oscillating amplitudes of θmax=7.5–30.0° and oscillating frequencies of Fs/Fo=0.5–3.0 considering two different incidence angles (α=0.0°, 60.0°) and three different Reynolds numbers (Re=50, 100, 150). The results show that the influences of key parameters (incidence angle, Reynolds number, oscillating amplitude, and oscillating frequency) are significant on the flow pattern and hydrodynamic forces. For the stationary cases, at smaller angle of incidence (α≤30.0°), Reynolds number has a large impact on the position of the separation points. When α is between 30.0° and 60.0°, it was found that the separation points are located at the rear corners. From a topological point of view, the diagram of flow pattern is summarized, including two distinct patterns, namely, main separation and vortex merging. A deep analysis of the influence of Reynolds number and incidence angles on the mean pressure coefficient along the triangular cylinder surface is presented. Additionally, for the oscillating cases, the lock-on phenomenon is captured. The dominant flow patterns are 2S mode and P+S mode in lock-on region at α=0.0°. It is found at α=60.0°, however, that the flow pattern is predominantly 2S mode. Furthermore, except for the case of Fs/Fo=2.0, the mean drag decreases as the oscillating amplitude increases for each Reynolds number at α=0.0°. At α=60.0°, the minimum mean drag for Fs/Fo=1.5 is lower than that for stationary case, and occurs at θmax=15.0° (Re=100) and θmax=22.5° (Re=150), respectively. Finally, the effect of Reynolds number on a rotational oscillation cylinder is elucidated.  相似文献   

19.
The separation and shock wave formation on the aft-body of a hypersonic adiabatic circular cylinder were studied numerically using the open source software OpenFOAM. The simulations of laminar flow were performed over a range of Reynolds numbers (\(8\times 10^3 < Re < 8\times 10^4\)) at a free-stream Mach number of 5.9. Off-body viscous forces were isolated by controlling the wall boundary condition. It was observed that the off-body viscous forces play a dominant role compared to the boundary layer in displacement of the interaction onset in response to a change in Reynolds number. A modified free-interaction equation and correlation parameter has been presented which accounts for wall curvature effects on the interaction. The free-interaction equation was manipulated to isolate the contribution of the viscous–inviscid interaction to the overall pressure rise and shock formation. Using these equations coupled with high-quality simulation data, the underlying mechanisms resulting in Reynolds number dependence of the lip-shock formation were investigated. A constant value for the interaction parameter representing the part of the pressure rise due to viscous–inviscid interaction has been observed at separation over a wide range of Reynolds numbers. The effect of curvature has been shown to be the primary contributor to the Reynolds number dependence of the free-interaction mechanism at separation. The observations in this work have been discussed here to create a thorough analysis of the Reynolds number-dependent nature of the lip-shock.  相似文献   

20.
The steady secondary flows (Taylor vortices) of a viscous incompressible fluid between concentric rotating cylinders are studied. The range of wave numbers a and Reynolds numbers R in which there are several secondary flow modes is determined. The branching of these modes is studied.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp.47–53, January–February, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号