首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The effect of an axial flow on the stability of the Taylor–Couette flow is explored for pseudoplastic fluids. The fluid is assumed to follow the Carreau–Bird model and mixed boundary conditions are imposed while the axial flow can be independent of rotational flow. The four-dimensional low-order dynamical system, resulted from Galerkin projection of the conservation of mass and momentum equations, includes additional non-linear terms in the velocity components originated from the shear-dependent viscosity. In absence of axial flow the base flow loses its radial flow stability to the vortex structure at a lower critical Taylor number, as the pseudoplasticity effects increases. The emergence of the vortices corresponds to the onset of a supercritical bifurcation which is also seen in the flow of a linear fluid. However, unlike the Newtonian case, pseudoplastic Taylor vortices lose their stability as the Taylor number reaches a second critical number corresponding to the onset of a Hopf bifurcation. Existence of an axial flow, induced by a pressure gradient appears to further advance each critical point on the bifurcation diagram. Complete flow field together with viscosity maps are given for stability regions in the bifurcation diagram.  相似文献   

2.
Order is found within the chaotic nonlinear flow between rotating coaxial cylinders. The flow stability analysis is carried out for a pseudoplastic fluid through bifurcation diagram and Lyapunov exponent histogram. The fluid is assumed to follow the Carreau–Bird model, and mixed boundary conditions are imposed. The low-order dynamical system, resulted from Galerkin projection of the conservation of mass and momentum equations, includes additional nonlinear terms in the velocity components originated from the shear-dependent viscosity. It is observed that the base flow loses its radial flow stability to the vortex structure at a lower critical Taylor number, as the shear-thinning effects increase. The emergence of the vortices corresponds to the onset of a supercritical bifurcation, which is also seen in the flow of a linear fluid. However, unlike the Newtonian case, shear-thinning Taylor vortices lose their stability as the Taylor number reaches a second critical number corresponding to the onset of a Hopf bifurcation. Complete flow field together with viscosity maps are given for different scenarios in the bifurcation diagram.  相似文献   

3.
A transient haemodynamic study in a model cavopulmonary vascular system has been carried out for a typical range of parameters using a finite element‐based Navier–Stokes solver. The focus of this study is to investigate the influence of non‐Newtonian behaviour of the blood on the haemodynamic quantities, such as wall shear stress (WSS) and flow pattern. The computational fluid dynamics (CFD) model is based on an artificial compressibility characteristic‐based split (AC‐CBS) scheme, which has been adopted to solve the Navier–Stokes equations in space–time domain. A power law model has been implemented to characterize the shear thinning nature of the blood depending on the local strain rate. Using the computational model, numerical investigations have been performed for Newtonian and non‐Newtonian flows for different frequencies and input pulse forms. The haemodynamic quantities observed in total cavopulmonary connection (TCPC) for the above conditions suggest that there are considerable differences in average (about 25–40%) and peak (about 50%) WSS distributions, when the non‐Newtonian behaviour of the blood is taken into account. The lower WSS levels observed for non‐Newtonian cases point to the higher risk of lesion formation, especially at higher pulsation frequencies. A realistic pulse form is relatively safer than a sinusoidal pulse as it has more energy distributed in the higher harmonics, which results in higher average WSS values. The present study highlights the importance of including non‐Newtonian shear thinning behaviour for modelling blood flow in the vicinity of repaired arterial connections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The steady flow inside a spatially modulated channel is examined for shear‐thinning and shear‐thickening fluids. The flow is induced by the translation of the lower plate. The modulation amplitude is assumed to be small. A regular perturbation expansion of the flow field is used, coupled to a variable‐step finite‐difference scheme, to solve the problem. Convergence and accuracy assessment against finite‐volume calculations indicates that there is a significant range of validity of the perturbation approach. The influence of the wall geometry, inertia and non‐Newtonian effects are investigated systematically. In particular, the influence of the flow and fluid parameters is examined on the conditions for the onset of separation, vortex size and location. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Axisymmetrically stable turbulent Taylor vortices between two concentric cylinders are studied with respect to the transition from vortex to wall driven turbulent production. The outer cylinder is stationary and the inner cylinder rotates. A low Reynolds number turbulence model using the kω formulation, facilitates an analysis of the velocity gradients in the Taylor–Couette flow. For a fixed inner radius, three radius ratios 0.734, 0.941 and 0.985 are employed to identify the Reynolds number range at which this transition occurs. At relatively low Reynolds numbers, turbulent production is shown to be dominated by the outflowing boundary of the Taylor vortex. As the Reynolds number increases, shear driven turbulence (due to the rotating cylinder) becomes the dominating factor. For relatively small gaps turbulent flow is shown to occur at Taylor numbers lower than previously reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
7.
A new turbulent flow with distinct three‐dimensional characteristics has been designed in order to study the impact of mean‐flow skewing on the turbulent coherent vortices and Reynolds‐averaged statistics. The skewing of a unidirectional plane Couette flow was achieved by means of a spanwise pressure gradient. Direct numerical simulations of the statistically steady Couette–Poiseuille flow enabled in‐depth explorations of the turbulence field in the skewed flow. The imposition of a modest spanwise gradient turned the mean flow about 8° away from the original Couette flow direction and this turning angle remained nearly the same over the entire cross section. Nevertheless, a substantial non‐alignment between the turbulent shear stress angle and the mean velocity gradient angle was observed. The structure parameter turned out to slightly exceed that in the pure Couette flow, contrary to the observations made in some other three‐dimensional shear flows. Coherent flow structures, which are known to be associated with the Reynolds shear stress in near‐wall regions, were identified by the λ2‐criterion. Instantaneous and ensemble‐averaged vortices resembled those found in the unidirectional Couette flow. In the skewed flow, however, the vortex structures were turned to align with the local mean‐flow direction. The conventional symmetry between Case 1 and Case 2 vortices was broken due to the mean‐flow three‐dimensionality. The turning of the coherent vortices and the accompanying symmetry‐breaking gave rise to secondary and tertiary turbulent shear stress components. By averaging the already ensemble‐averaged shear stresses associated with Case 1 and Case 2 vortices in the homogeneous directions, a direct link between the educed near‐wall structures and the Reynolds‐averaged turbulent stresses was established. These observations provide evidence in support of the hypothesis that the structural model proposed for two‐dimensional turbulent boundary layers remains valid also in flows with moderate mean three‐dimensionality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The steady, axisymmetric laminar flow of a Newtonian fluid past a centrally‐located sphere in a pipe first loses stability with increasing flow rate at a steady O(2)‐symmetry breaking bifurcation point. Using group theoretic results, a number of authors have suggested techniques for locating singularities in branches of solutions that are invariant with respect to the symmetries of an arbitrary group. These arguments are presented for the O(2)‐symmetry encountered here and their implementation for O(2)‐symmetric problems is discussed. In particular, how a bifurcation point may first be detected and then accurately located using an ‘extended system’ is described. Also shown is how to decide numerically if the bifurcating branch is subcritical or supercritical. The numerical solutions were obtained using the finite element code ENTWIFE. This has enabled the computation of the symmetry breaking bifurcation point for a range of sphere‐to‐pipe diameter ratios. A wire along the centerline of the pipe downstream of the sphere is also introduced, and its effect on the critical Reynolds number is shown to be small. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
The influence of shear thinning on drop deformation is examined through a numerical simulation. A two‐dimensional formulation within the scope of the boundary element method (BEM) is proposed for a drop driven by the ambient flow inside a channel of a general shape, with emphasis on a convergent–divergent channel. The drop is assumed to be shear thinning, obeying the Carreau–Bird model and the suspending fluid is Newtonian. The viscosity of the drop at any time is estimated on the basis of a rate‐of‐strain averaged over the region occupied by the drop. The viscosity thus changes from one time step to the next, and it is strongly influenced by drop deformation. It is found that small drops, flowing on the axis, elongate in the convergent part of the channel, then regain their spherical form in the divergent part; thus confirming experimental observations. Newtonian drops placed off‐axis are found to rotate during the flow with the period related to the initial extension, i.e. to the drop aspect ratio. This rotation is strongly prohibited by shear thinning. The formulation is validated by monitoring the local change of viscosity along the interface between the drop and the suspending fluid. It is found that the viscosity averaged over the drop compares, generally to within a few per cent, with the exact viscosity along the interface.  相似文献   

10.
The main objective of this paper is to address the stability and bifurcation of the Couette flow between two concentric rotating cylinders, and to verify rigorously Taylor's observation in his experiments [13]. A nonlinear theory is obtained for the Taylor problem, leading in particular to rigorous justifications of the linear theory used by physicists, and the Taylor vortex structure. The main technical tools are the dynamic bifurcation theory and the geometric theory for incompressible flows, both developed recently by Ma & Wang [10, 12].  相似文献   

11.
A new finite element method is developed to simulate time‐dependent viscoelastic shear‐thinning flows characterized by the generalized Oldroyd‐B model. The focus of the algorithm is improved stability through a free‐energy dissipative scheme by using low‐order piecewise‐constant finite element approximations for stress. The algorithm is further modified by incorporating a pressure‐projection method, a DG‐upwinding scheme, a symmetric interior penalty DG method to solve the elliptic pressure‐update equation and a geometric multigrid preconditioner. The improved stability and cost to accuracy is compared when using higher order discontinuous bilinear approximation, where in addition, we consider the influence of a slope limiter for these elements. The algorithm is applied to the 2D start‐up‐driven cavity problem, and the stability of the free energy is illustrated and compared between element choices. An application of the model to modelling blood in small arterioles and channels is considered by simulating pulsatile blood flow through a stenotic arteriole. The individual influences of viscoelasticity and shear‐thinning within the generalized Oldroyd‐B model are investigated by comparing results to the Newtonian, generalized Newtonian and Oldroyd‐B models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Flow dynamics plays an important role in the pathogenesis and treatment of cerebral aneurysms. The temporal and spatial variations of wall shear stress in the aneurysm are hypothesized to be correlated with its growth and rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This work describes the flow dynamics in a patient‐specific model of carotid artery with a saccular aneurysm under Newtonian and non‐Newtonian fluid assumptions. The model was obtained from three‐dimensional rotational angiography image data and blood flow dynamics was studied under physiologically representative waveform of inflow. The three‐dimensional continuity and momentum equations for incompressible and unsteady laminar flow were solved with a commercial software using non‐structured fine grid with 283 115 tetrahedral elements. The intra‐aneurysmal flow shows complex vortex structure that change during one pulsatile cycle. The effect of the non‐Newtonian properties of blood on the wall shear stress was important only in the arterial regions with high velocity gradients, on the aneurysmal wall the predictions with the Newtonian and non‐Newtonian blood models were similar. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
We introduce a stabilized finite element method for the 3D non‐Newtonian Navier–Stokes equations and a parallel domain decomposition method for solving the sparse system of nonlinear equations arising from the discretization. Non‐Newtonian flow problems are, generally speaking, more challenging than Newtonian flows because the nonlinearities are not only in the convection term but also in the viscosity term, which depends on the shear rate. Many good iterative methods and preconditioning techniques that work well for the Newtonian flows do not work well for the non‐Newtonian flows. We employ a Galerkin/least squares finite element method, with stabilization parameters adjusted to count the non‐Newtonian effect, to discretize the equations, and the resulting highly nonlinear system of equations is solved by a Newton–Krylov–Schwarz algorithm. In this study, we apply the proposed method to some inelastic power‐law fluid flows through the eccentric annuli with inner cylinder rotation and investigate the robustness of the method with respect to some physical parameters, including the power‐law index and the Reynolds number ratios. We then report the superlinear speedup achieved by the domain decomposition algorithm on a computer with up to 512 processors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This paper combines the pseudo‐compressibility procedure, the preconditioning technique for accelerating the time marching for stiff hyperbolic equations, and high‐order accurate central compact scheme to establish the code for efficiently and accurately solving incompressible flows numerically based on the finite difference discretization. The spatial scheme consists of the sixth‐order compact scheme and 10th‐order numerical filter operator for guaranteeing computational stability. The preconditioned pseudo‐compressible Navier–Stokes equations are marched temporally using the implicit lower–upper symmetric Gauss–Seidel time integration method, and the time accuracy is improved by the dual‐time step method for the unsteady problems. The efficiency and reliability of the present procedure are demonstrated by applications to Taylor decaying vortices phenomena, double periodic shear layer rolling‐up problem, laminar flow over a flat plate, low Reynolds number unsteady flow around a circular cylinder at Re = 200, high Reynolds number turbulence flow past the S809 airfoil, and the three‐dimensional flows through two 90°curved ducts of square and circular cross sections, respectively. It is found that the numerical results of the present algorithm are in good agreement with theoretical solutions or experimental data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Annular pressure‐tooling extrusion is simulated for a low density polymer melt using a Taylor–Petrov–Galerkin finite element scheme. This represents industrial‐scale wire‐coating. Viscoelastic fluids are modeled via three forms of Phan‐Thien/Tanner (PTT) constitutive laws employed for short‐die and full specification pressure‐tooling. Effects of variation in Weissenberg number (We) and polymeric viscosity are investigated. Particular attention is paid to mesh refinement to predict accurate results. The impact of variation in shear‐thinning and strain‐softening properties is considered upon the modelling predictions. For the short‐die flow, the influence of the lack of strain softening is identified. For the full‐die flow and more severe deformation rates, the linear PTT model failed to converge. In contrast, the exponential PTT model is found to be more stable numerically and to adequately reflect the material response. Comparing short‐die and full‐die pressure‐tooling results, shear rates increase 10‐fold, while strain rates increase one hundred times. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A stabilized finite element method, to carry out the linear stability analysis of a two‐dimensional base flow to three‐dimensional perturbations that are periodic along span, is presented. The resulting equations for the time evolution of the disturbance requires a solution to the generalized eigenvalue problem. The analysis is global in nature and is also applicable to non‐parallel flows. Equal‐order‐interpolation functions for velocity and pressure are utilized. Stabilization terms are added to the Galerkin formulation to admit the use of equal‐order‐interpolation functions and to eliminate node‐to‐node oscillations that might arise in advection‐dominated flows. The proposed formulation is tested on two flow problems. First, the mode transitions in the circular Couette flow are investigated. Two scenarios are considered. In the first one, the outer cylinder is at rest, while the inner one spins. Two linearly unstable modes are identified. The primary mode is real and represents the axisymmetric Taylor vortices. The second mode is complex and consists of spiral vortices. For the counter‐rotating cylinders, the primary transition is via the appearance of spiral vortices. Excellent agreement with results from earlier studies is observed. The formulation is also utilized to investigate the parallel and oblique modes of vortex shedding past a cylinder for the Re = 100 flow. It is found that the flow is associated with a large number of unstable oblique shedding modes. The parallel mode of vortex shedding is a special case of this family of modes and is associated with the largest growth rate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is concerned with the application of radial basis function networks (RBFNs) for solving non‐Newtonian fluid flow problems. Indirect RBFNs, which are based on an integration process, are employed to represent the solution variables; the governing differential equations are discretized by means of point collocation. To enhance numerical stability, stress‐splitting techniques are utilized. The proposed method is verified through the computation of the rectilinear and non‐rectilinear flows in a straight duct and the axisymmetric flow in an undulating tube using Newtonian, power‐law, Criminale–Ericksen–Filbey (CEF) and Oldroyd‐B models. The obtained results are in good agreement with the analytic and benchmark solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, the differential quadrature (DQ) method was used to simulate the eccentric Couette–Taylor vortex flow in an annulus between two eccentric cylinders with rotating inner cylinder and stationary outer cylinder. An approach combining the SIMPLE (semi-implicit method for pressure-linked equations) and DQ discretization on a non-staggered mesh was proposed to solve the time-dependent, three-dimensional incompressible Navier–Stokes equations in the primitive variable form. The eccentric steady Couette–Taylor flow patterns were obtained from the solution of three-dimensional Navier–Stokes equations. The reported numerical results for steady Couette flow were compared with those from Chou [1], and San and Szeri [2]. Very good agreement was achieved. For steady eccentric Taylor vortex flow, detailed flow patterns were obtained and analyzed. The effect of eccentricity on the eccentric Taylor vortex flow pattern was also studied.  相似文献   

19.
The time‐related element‐free Taylor–Galerkin method with non‐splitting decoupling process (EFTG‐NSD) is proposed for the simulation of steady flows. The goal of the present paper is twofold. One is to raise the efficiency of the time‐related methods for solving steady flow problems, and the other is to obtain a good stability. The EFTG‐NSD method, which uses the time‐related Navier–Stokes equations to describe steady flows, does not care about the intermediate process and obtains solution of steady flows through time marching. Different from the classical time‐related fractional step methods, the EFTG‐NSD method decouples the Navier–Stokes equations without any operator‐splitting and correction. Because the elimination of correction at each iteration step reduces the computation cost, the EFTG‐NSD method possesses higher computation efficiency. In addition, the EFTG‐NSD method has a good stability due to the use of the Taylor–Galerkin formula in time and space discretization. Furthermore, the method combining element‐free Galerkin method with Taylor–Galerkin method is an important supplement of the element‐free Galerkin method for solving flow problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Simulation codes for solving large systems of ordinary differential equations suffer from the disadvantage that bifurcation‐theoretic results about the underlying dynamical system cannot be obtained from them easily, if at all. Bifurcation behaviour typically can be inferred only after significant computational effort, and even then the exact location and nature of the bifurcation cannot always be determined definitively. By incorporating relatively minor changes to an existing simulation code for the Taylor–Couette problem, specifically, by implementing the Newton–Picard method, we have developed a computational structure that enables us to overcome some of the inherent limitations of the simulation code and begin to perform bifurcation‐theoretic tasks. While a complete bifurcation picture was not developed, three distinct solution branches of the Taylor–Couette problem were analysed. These branches exhibit a wide variety of behaviours, including Hopf bifurcation points, symmetry‐breaking bifurcation points, turning points and bifurcation to motion on a torus. Unstable equilibrium and time‐periodic solutions were also computed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号