首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
L‐cysteine plays a vital role in organisms, and is an important biomarker for many pathological diseases that seriously affect human health. In the study, a photoelectrochemical (PEC) probe with zinc‐tetramine phthalocyanine covalently grafted to graphene oxide (ZnTAPc‐Gr) was developed for L‐cysteine detection. Graphene oxide (GO) with carboxyl was used to immobilize zinc‐tetramine phthalocyanine (ZnTAPc) with amidogen (a graft structure formed by an amide covalent bond), which could firmly immobilize ZnTAPc, thereby improving the photoelectrochemical performance and stability. L‐cysteine molecule, an electron acceptor, was specifically recognized by the PEC probe, exhibiting a decrease in the photocurrent signal. Under the optimal experimental conditions, the fabricated PEC probe exhibited excellent performance in L‐cysteine analysis within a linear range of 0.25–113 μM and a detection limit of 11.4 nM. The PEC probe showed high sensitivity, selectivity, and stability. The method described herein provides an effective strategy for PEC probe construction for L‐cysteine detection, and can also serve as a promising PEC platform for the analyses of other small molecules.  相似文献   

2.
This paper describes a method for the analysis of cysteine in human urine using capillary micellar electrokinetic chromatography and on‐column reaction with 2,2′‐dipyridyl disulfide. In this reaction cysteine is quantitatively transformed into a mixed disulfide concomitantly with formation of an equimolar amount of 2‐thiopyridone that is further separated by capillary micellar electrokinetic chromatography and determined spectrophotometrically at 343 nm. The concentration of cysteine is thus estimated indirectly from the result of 2‐thiopyridone determination. The linear detection range for concentration versus peak area for the assay is from 0.05 to 5 mM (correlation coefficient 0.989) with a detection limit of 2.5 μM and a limit of quantitation of 8.5 μM. The inter‐day reproducibility of the peak area was 2.18% and the inter‐day reproducibility of the migration time 0.51%. The method is relatively rapid, simple, and can be easily automated. Moreover, its detection limit covers the concentration range at which cysteine is present in biological samples such as human urine.  相似文献   

3.
Selective and quantitative detection of biological thiols such as cysteine, homocysteine, and glutathione is often necessary because abnormal levels of such thiols can cause some diseases. Here, we report that bis(pentafluorophenyl) 1,4‐benzenedicarbothionic acid diester can serve as a turn‐on fluorescent probe for selective detection of cysteine vis‐a‐vis homocysteine and glutathione. When cysteine was added to a mixture of the diester and a sodium phosphate buffer solution with THF (60 vol%), which is non‐fluorescent, the mixture became green‐fluorescent. In contrast, addition of homocysteine or glutathione did not make the mixture fluorescent. A native‐chemical‐ligation‐based mechanism is proposed.  相似文献   

4.
《Electroanalysis》2004,16(23):1938-1943
An organically modified sol‐gel glass (ORMOSIL) encapsulating pyrroloquinoline quinone (PQQ)‐modified electrode for the rapid, sensitive and simple determination of thiol‐containing compounds such as cysteine and glutathione is reported. The effect of applied potential, nature of thiol compound and pH on the response of the sensor was examined and optimum conditions were determined. The electrochemical responses and detection limits were found to be sensitive to the nature of thiols and pH. The electrochemical responses for cysteine and glutathione at an applied potential of ?0.2 V (vs. Ag/AgCl) were found to be linear with detection limits of 18 nM for cysteine and 36 nM for glutathione at pH 3.5, whereas the detection limits at pH 8.5 were 0.5 μM for cysteine and 1 μM for glutathione. The electrode retained 95% of the original response for 7 days when stored at 4 °C. The ORMOSIL‐encapsulated PQQ was also characterized by spectrophotometry. The absorbance measurement using 5,5′‐dithiobis(2‐nitrobenzoic acid) at 412 nm justify the PQQ‐mediated oxidation of glutathione whereas fluorescence measurements (excitation wavelength=380 nm; emission wavelength=480 nm) justify the successful encapsulation of PQQ in ORMOSIL matrix.  相似文献   

5.
The simultaneous electrochemical detection of homocysteine and cysteine using an absorbed ortho‐quinone species, catechol, at the nanocarbon modified glassy carbon electrode was achieved via 1,4‐Michael addition reaction. The detection was done in the presence and the absence of each other as well as with both glutathione and ascorbic acid present in order to investigate the selectivity of homocysteine and cysteine. A determination of homocysteine sensitivity is (0.882±0.296) nA nM?1 with a LOD of ca. 11 nM and cysteine sensitivity is (7.501±0.202) mA µM?1 with a LOD of ca. 5.0 µM within a range of 0–0.1 mM.  相似文献   

6.
This article reports direct electrocatalytic oxidation of cysteine (CySH) and cystine (CyS‐SCy) at an inexpensive Nafion/lead oxide‐manganese oxide combined catalyst in physiological pH. The synthesized lead oxide‐manganese oxide material is simply mixed with Nafion in the form of cast solution and modified on a disposable screen‐printed carbon electrode (designated as SPE/Nf‐PMO) for biosensing application. Electrochemical study with a standard redox couple of quinone/hydroquinone demonstrates an enhanced current response at the combined catalyst compared to its individual component. Surface characterization further provides information regarding the structural morphology of the catalyst to its catalytic performance. Direct electrocatalytic oxidation signals are observed at +0.75 and +1.20 V vs. Ag/AgCl for cysteine and cystine, respectively, at the SPE/Nf‐PMO. To extend the applicability, we further apply the proposed system for the detection of cysteine and cystine by flow injection analysis (FIA). Under optimized conditions, the detection limit (S/N=3) is 0.43 μM and 0.33 μM for cysteine and cystine, respectively.  相似文献   

7.
《Electroanalysis》2018,30(8):1820-1827
A dual strategy that the L‐cysteine self‐assembling on three‐dimensional network of organic‐hybrid‐materials realized by successive interaction of Au−S bond is employed to construct as the amplified electrochemical sensor for determination Cu (II). Specifically, the sensor combined a rigid three‐dimension inorganic net which provides a higher interfacial area as well as faster adsorption of ions. Accordingly, surface and interfacial‐dominated electro‐catalysis reactivity is used as an ideal test‐bed to verify the reliability of electrochemical sensor that reveal enhancement sensitiveness and selectivity, low detection limit, and stability over a long period of time. Time‐dependent density functional theory (TD‐DFT) were used to calculating the all complexes energies at the B3LYP/LANL2DZ level associated with the polarized continuum model (PCM). The result of calculation indicates that the binding strength of Cu (II), Cd (II), As (III), Hg (II) with L‐cysteine are decrease successively, and this is in well agreement with experimental results. This work not only achieves an unprecedented understanding to L‐cysteine/Au/TiO2/GCE sensor but also provides a new perspective for application in detection of Cu (II) in real river waters.  相似文献   

8.
It was first time using the l‐cysteine self‐assembled on the surface of gold nanoparticles and Bi2O3 nano‐structured materials modified GCE composed l‐cysteine/AuNPs/Bi2O3/GCE sensor. The sensor possessed three‐dimensional nanostructure and exhibited a higher ratio of activity sites, large active surface, fast electron transfer rate, excellent catalytic, sensing characteristics and larger affinity to Cu (II). The sensor was determined to have an excellent sensitivity and selectivity for the detection of Cu (II). The characterization of sensor as well as the optimization of the analytical procedure was reported. The optimized conditions parameters allowed the detection of Cu (II) concentration following short analysis time, a detection limit of 5×10?11 M at 80 s of preconcentration time was obtained using the as‐prepared sensor, and also show excellent stability and good repeatability, and, thus, could be used for detection of Cu (II) in environment.  相似文献   

9.
《Electroanalysis》2017,29(10):2410-2416
A thiolated catechol (CA) consisting of 1,6‐Hexanedithiol (HDT) and CA was modified on a gold (Au) electrode to obtain an amperometric L‐cysteine sensor with detection limit of 60.6 nM. The preparation of thiolated CA was conducted via a thiol addition between HDT and electro‐oxidized CA (EOCA). Briefly, the thiol addition reaction was accomplished by potential cycling of HDT/Au electrode in 0.1 M phosphate buffer (PB, pH 7.2) containing CA, and an EOCA‐HDT/Au electrode was produced. The obtained EOCA‐HDT/Au electrode exhibits a pair of well‐defined redox peaks (at 0.22/0.10 V) of o‐quinone moiety, which effectively mediates the oxidation of L‐cysteine in a 0.1 M PB (pH 7.2), with an over‐potential decrease by ca. 0.12 V (versus bare Au electrode). Electrochemical quartz crystal microbalance, cyclic voltammetry and surface‐enhanced Raman spectra were used to study relevant processes and/or film properties. The amperometric L‐cysteine sensor has good anti‐interferent ability and reproducibility. It also has acceptable recovery for detection of L‐cysteine in urine samples.  相似文献   

10.
We have developed a simple, fast, accurate, and cheap method for the simultaneous determination of total cysteine, homocysteine, glutathione, and N‐acetylcysteine in brain homogenates based on the reduction of disulfide bonds by tris(2‐carboxyethyl) phosphine, pre‐column derivatization of free thiol groups with 2‐chloro‐1‐methylquinolinium tetrafluoroborate followed by ion‐pair reversed‐phase high‐performance liquid chromatography separation with ultraviolet detection. The separation of thiol derivatives was achieved in 10 min. Linearity was observed in the range of 10–300, 0.7–10, 2–30, and 3–20 μmol/L homogenate with a limit of detection of 3.7, 0.2, 0.8, and 1.2 μmol/L homogenate for cysteine, homocysteine, glutathione, and N‐acetylcysteine, respectively. The precision, calculated as relative standard deviation, was in the range of 1.21–4.77, 1.53–14.35, 0.47–1.92, and 1.61–8.95% for cysteine, homocysteine, glutathione, and N‐acetylcysteine, respectively. The presented method was successfully applied to the selective determination of total amino thiols in pig brain tissue samples.  相似文献   

11.
This paper, for the first time, reported the development of a simple, rapid, and reliable method for the separation and sensitive determination of four thiol compounds including homocysteine, cysteine, glutathione, and N‐acetylcysteine based on glass MCE with fluorescence detection using a highly reactive fluorogenic probe, 1,3,5,7‐tetramethyl‐8‐phenyl‐(2‐maleimide)‐difluoroboradiaza‐s‐indacene (TMPAB‐o‐M), as the labeling reagent. TMPAB‐o‐M reacted selectively with thiols to produce highly fluorescent derivatives and the highest derivatization efficiency was achieved within 6 min in physiological conditions. After the optimization of separation conditions, a baseline separation of the four thiol compounds was achieved with the detection limits ranging from 2 nM for glutathione to 4 nM for cysteine (S/N = 3) and RSDs (n = 5) in the range of 3.2–3.8%. The proposed method was significantly sensitive compared to those using electrochemical or even LIF detection in MCE‐based setup reported previously, and applied to the determination of intracellular thiols in macrophage RAW264.7 cells.  相似文献   

12.
《Electroanalysis》2018,30(1):194-203
Glassy carbon electrode (GCE) modified with L‐cysteine and gold nanoparticles‐reduced graphene oxide (AuNPs‐RGO) composite was fabricated as a novel electrochemical sensor for the determination of Cu2+. The AuNPs‐RGO composite was formed on GCE surface by electrodeposition. The L‐cysteine was decorated on AuNPs by self‐assembly. Physicochemical and electrochemical properties of L‐cysteine/AuNPs‐RGO/GCE were characterized by scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, Raman spectroscopy, X‐ray diffraction, cyclic voltammetry and adsorptive stripping voltammetry. The results validated that the prepared electrode had many attractive features, such as large electroactive area, good electrical conductivity and high sensitivity. Experimental conditions, including electrodeposition cycle, self‐assembly time, electrolyte pH and preconcentration time were studied and optimized. Stripping signals obtained from L‐cysteine/AuNPs‐RGO/GCE exhibited good linear relationship with Cu2+ concentrations in the range from 2 to 60 μg L−1, with a detection limit of 0.037 μg L−1. Finally, the prepared electrode was applied for the determination of Cu2+ in soil samples, and the results were in agreement with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

13.
《Electroanalysis》2005,17(23):2163-2169
A thiol‐specific electroactive cross‐linker, N‐(2‐ethyl‐ferrocene)maleimide (Fc‐Mi), has been used to tag surface‐confined peptides containing cysteine residues or oligodeoxynucleotides (ODNs) whose 3′ ends have been modified with thiol groups. The peptides studied herein include both the oxidized and reduced forms of glutathione and a hexapeptide. Cyclic voltammograms (CVs) of the Fc‐Mi groups attached to the surfaces were used to quantify the total number of cysteine residues that are tagged and/or can undergo facile electron transfer reactions with the underlying electrodes. A quartz crystal microbalance was used in conjunction with CV to estimate the total number of cysteine groups labeled by Fc‐Mi per peptide molecule. By comparing to mass spectrometric studies, it is confirmed that not all of the Fc‐Mi linked to the cysteine groups can participate in the electron transfer reactions. The methodology is further extended to the determination of ODN samples in a sandwich assay wherein the thiol linker on the 3′ end can be tagged with Fc‐Mi. The analytical performance was evaluated through determinations of a complementary ODN target and targets with varying numbers of mismatching bases. ODN samples as low as 10 fmol can be detected. Such a low detection level is remarkable considering that no signal amplification scheme is involved in the current method. The approach is shown to be sequence‐ and/or structure‐specific and does not require sophisticated instrumentation and complex experimental procedure.  相似文献   

14.
The sensitive detection of thiols including glutathione and cysteine is desirable owing to their roles as indispensable biomolecules in maintaining intracellular biological redox homeostasis. Herein, we report the design and synthesis of SEluc‐1 (s ulfinate e ster luc iferin), a chemoselective probe exhibiting a ratiometric and turn‐on response towards thiols selectively in fluorescence and bioluminescence, respectively. The probe, which was designed based on the “caged” luciferin strategy, displays excellent selectivity, high signal/noise ratio (>240 in the case of bioluminescence), and a biologically relevant limit of detection (LOD, 80 nm for cysteine), which are all desirable traits for a sensitive bioluminescent sensor. SEluc‐1 was further applied to fluorescence imaging of thiol activity in living human cervical cancer HeLa cell cultures, and was successfully able to detect fluctuations in thiol concentrations induced by oxidative stress in a bioluminescent assay utilizing African green monkey fibroblast COS‐7 cells and human breast adenocarcinoma MCF‐7 cells.  相似文献   

15.
We have demonstrated for the first time the suitability of fluorosurfactant‐capped spherical gold nanoparticles as HPLC postcolumn colorimetric reagents for the direct assay of cysteine, homocysteine, cystine, and homocystine. The success of this work was based on the use of an on‐line tris(2‐carboxyethyl)phosphine reduction column for cystine and homocystine. Several parameters affecting the separation efficiency and the postcolumn colorimetric detection were thoroughly investigated. Under the optimized conditions, cysteine, homocysteine, cystine, and homocystine in human urine and plasma samples were determined. Detection limits for cysteine, homocysteine, cystine, and homocystine ranged from 0.16–0.49 μM. The accuracy in terms of recoveries ranged between 94.0–102.1%. This proposed method was rapid, inexpensive, and simple.  相似文献   

16.
The electrochemical and electrocatalytic properties of two synthetic imidazole analogues of the redox cofactor pyrroloquinoline quinone (PQQ) were evaluated. Cyclic voltammetry measurements as a function of pH indicated that both 4,5‐dihydro‐4,5‐dioxo‐1H‐imidazolo[5,4‐f]quinoline‐7,9‐dicarboxylic acid ( 1 ) and 4,5‐dihydro‐4,5‐dioxo‐2‐methyl‐1H‐imidazolo[5,4‐f]quinoline‐7,9‐dicarboxylic acid ( 2 ) undergo a reversible reduction of the o‐quinone moiety below pH 8 with potentials slightly more positive than those observed for PQQ. Upon incorporation into a polypyrrole membrane on the tip of a glassy carbon electrode, 1 and 2 exhibited electrocatalytic properties sufficient for the indirect amperometric detection of cysteine. The response for cysteine was linear up to 1 mM over a wide pH range. Detection limits (S/N=3) were in the μM range and dependent on the solution pH. Interference from redox active species such as dopamine and uric acid were minimized by the pH‐dependent redox potentials of 1 and 2 and thus the ability to tune the detection potential.  相似文献   

17.
A 1‐[2‐hydroxynaphthylazo]‐6‐nitro‐2‐naphthol‐4‐sulfonate/ CuO nanoparticles modified carbon paste electrode (HNNSCCPE) was constructed and the electro‐oxidation of isoprenaline at the surface of the modified electrode was studied using cyclic voltammetry (CV), chronoamperometry (CHA), and square wave voltammetry (SWV). Under the optimized conditions, the square wave voltammetric peak current of isoprenaline increased linearly with isoprenaline concentrations in the range of 1.0×10?7 to 7.0×10?4 M and detection limit of 5.0×10?8 M was obtained for isoprenaline. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of isoprenaline, acetaminophen and N‐acetyl‐L‐cysteine which makes it suitable for the detection of isoprenaline in the presence of acetaminophen and N‐acetyl‐L‐cysteine in real samples.  相似文献   

18.
A chemically modified glassy carbon (GC) electrode was developed as an amperometric sensor for detection of biological thiols. The electrode was modified by inclusion of co‐enzyme pyrroloquinoline quinone (PQQ) and a co‐catalyst of oxidized single wall carbon nanotubes (Ox‐SWNT) into a gold polypyrrole (Au‐PPy) nanocomposite matrix. The electrode (PQQ/Ox‐SWNT/Au‐PPy/GC) was characterized using scanning electron microscopy and cyclic voltammetry. Optimal conditions for the PQQ/Ox‐SWNT/Au‐PPy/GC electrode were determined and then utilized for the amperometric detection of L‐cysteine, N‐acetyl‐L‐cysteine, L‐penicillamine and D, L‐glutathione. The electrochemical response for each thiol in pH 3.2 citrate phosphate buffer at +450 mV (vs. Ag/AgCl) was found to be linear with limit of detections (LOD, S/N=3) ranging from 0.50 µM for L‐penicillamine to 1.55 µM for D, L‐glutathione with sensitivities of 30.2 nA/µM and 3.6 nA/µM respectively. The electrode design is simple and easy to construct using a minimum amount of co‐enzyme and co‐catalyst, resulting in detection methods with very good stability and improved sensitivity for thiol detection.  相似文献   

19.
A highly substituted imidazole‐based colorimetric and fluorogenic chemosensor, 2‐methoxy‐4‐(4,5‐diphenyl‐1H‐imidazol‐2‐yl)phenol (L), for the detection of Cu2+ ion and subsequent colorimetric detection of an amino acid, cysteine, was investigated. L exhibited a distinct color change from colorless to red in the presence of Cu2+ in an aqueous medium. The L‐Cu2+ complex can also be used to detect cysteine by the naked eye over a series of amino acids. The receptor L behaves as a highly selective colorimetric and fluorescent sensor for Cu2+ ions at concentrations as low as 4.33 and 2.25 μM, respectively. These values are much less compared to the WHO recommended limit of 30 μM for Cu2+ in drinking water. From Job's plot and the ESI‐MS spectrum, a 1:1 stoichiometric complex between L and Cu2+ ions can readily be reckoned. This binding was also substantiated by the EPR spectrum and magnetic susceptibility measurements. Additionally, the binding of L with Cu2+ ions was also manifested in the detection of B16F10 cells. This was substantiated through fluorescence microscopy. The spectrum of the L‐Cu2+ entity was also attempted to reproduce theoretically. The probable structure of this was also propounded through Density Functional Theory.  相似文献   

20.
Despite all remarkable progress in gel‐based proteomics in recent years, there is still need to further improve quantification by decreasing the detection limits and increasing the dynamic range. These criteria are achieved best by fluorescent dyes that specifically stain the proteins either by adsorption after gel electrophoresis (in‐gel staining) or covalent coupling prior to gel electrophoresis (in‐solution staining). Here we report a multiplex analysis of protein samples using maleimide‐activated cyanine‐based (Cy3 and Cy5) and rhodamine‐based dyes (Dy505, Dy535, and Dy635) to permanently label all thiol‐groups of cysteine‐containing proteins. The detection limits in SDS‐PAGE were about 10 ng per band and even 2 ng for BSA due to its high content of cysteine residues. Thus only 5 μg protein of a mouse brain homogenate were analyzed by 2‐DE. Both cyanine‐ and rhodamine‐based dyes also stained proteins that did not contain cysteines, probably by reaction with amino groups. This side reactivity did not limit the method and might even extend its general use to proteins missing cysteine residues, but at a lower sensitivity. The dynamic range was more than two orders of magnitude in SDS‐PAGE and the Dy‐fluorophores did not alter the mobility of the tested proteins. Thus, a mixture of Dy505‐, Dy555‐, and Dy635‐labeled Escherichia coli lysates were separated by 2‐DE in a single gel and the three spot patterns relatively quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号