首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vibration of a structure can be controlled using either a passive tuned mass damper or using an active vibration control system. In this paper, the design of a multifunctional system is discussed, which uses an inertial actuator as both a tuned mass damper and as an element in a velocity feedback control loop. The natural frequency of the actuator would normally need to be well below that of the structure under control to give a stable velocity feedback controller, whereas it needs to be close to the natural frequency of a dominant structural resonance to act as an effective tuned mass damper. A compensator is used in the feedback controller here to allow stable feedback operation even when the actuator natural frequency is close to that of a structural mode. A practical example of such a compensator is described for a small inertial actuator, which is then used to actively control the vibrations both on a panel and on a beam. The influence of the actuator as a passive tuned mass damper can be clearly seen before the feedback loop is closed, and broadband damping is then additionally achieved by closing the velocity feedback loop.  相似文献   

2.
This paper presents a theoretical study of active vibration isolation on a two degree of freedom system. The system consists of two lumped masses connected by a coupling spring. Both masses are also attached to a firm reference base by a mounting spring. The lower mass is excited by a point force. A reactive control force actuator is used between the two masses in parallel with the coupling spring. Both masses are equipped with an absolute velocity sensor. The two sensors and the actuator are used to implement velocity feedback control loops to actively isolate the upper mass from the vibrations of the lower mass over a broad range of frequencies. The primary concern of the study is to determine what type of velocity feedback configuration is suitable with respect to the five parameters that characterise the system (the three spring stiffnesses and the two masses). It is shown analytically that if the ratio of the lower mounting spring stiffness to the lower mass is larger than the ratio of the upper mounting spring stiffness to the upper mass (supercritical system), feeding back the absolute upper mass velocity to the reactive force actuator results in an unconditionally stable feedback loop and the vibration isolation objective can be fully achieved without an overshot at higher frequencies. In contrast, if the ratio of the lower mounting spring stiffness to the lower mass is smaller than the ratio of the upper mounting spring stiffness to the upper mass (subcritical system), the upper mass velocity feedback is conditionally stable and the vibration isolation objective cannot be accomplished in a broad frequency band. For subcritical systems a blended velocity feedback is proposed to stabilise the loop and to improve the broad-band vibration isolation effect. A simple inequality is introduced to derive the combinations between the two error velocities that guarantee unconditionally stable feedback loops.  相似文献   

3.
An inertial actuator (also known as a proof mass actuator) applies forces to a structure by reacting them against an “external” mass. This approach to actuation may provide some practical benefits in the active control of vibration and structure-borne noise: system reliability may be improved by removing the actuator from a structural load path; effective discrete point-force actuation permits ready attachment to curved surfaces, and an inherent passive vibration absorber effect can reduce power requirements.This paper describes a class of recently developed inertial actuators that is based on mechanical amplification of displacements of an active piezoceramic element. Important actuator characteristics include resonance frequencies, clamped force, and the drive voltage to output the force frequency response function.The paper addresses one particular approach to motion amplification, the “dual unimorph,” in detail. A model of actuator dynamic behavior is developed using an assumed-modes method, treating the piezoelectrically induced stresses as external forces. Predicted actuator characteristics agree well with experimental data obtained for a prototype actuator. The validated actuator dynamic model provides a tool for design improvement.  相似文献   

4.
This work deals with the active vibration control of beams with smart constrained layer damping (SCLD) treatment. SCLD design consists of viscoelastic shear layer sandwiched between two layers of piezoelectric sensors and actuator. This composite SCLD when bonded to a vibrating structure acts as a smart treatment. The sensor piezoelectric layer measures the vibration response of the structure and a feedback controller is provided which regulates the axial deformation of the piezoelectric actuator (constraining layer), thereby providing adjustable and significant damping in the structure. The damping offered by SCLD treatment has two components, active action and passive action. The active action is transmitted from the piezoelectric actuator to the host structure through the viscoelastic layer. The passive action is through the shear deformation in the viscoelastic layer. The active action apart from providing direct active control also adjusts the passive action by regulating the shear deformation in the structure. The passive damping component of this design eliminates spillover, reduces power consumption, improves robustness and reliability of the system, and reduces vibration response at high-frequency ranges where active damping is difficult to implement. A beam finite element model has been developed based on Timoshenko's beam theory with partially covered SCLD. The Golla-Hughes-McTavish (GHM) method has been used to model the viscoelastic layer. The dissipation co-ordinates, defined using GHM approach, describe the frequency-dependent viscoelastic material properties. Models of PCLD and purely active systems could be obtained as a special case of SCLD. Using linear quadratic regulator (LQR) optimal control, the effects of the SCLD on vibration suppression performance and control effort requirements are investigated. The effects of the viscoelastic layer thickness and material properties on the vibration control performance are investigated.  相似文献   

5.
An optimal design of a hybrid vibration absorber (HVA) with a displacement and a velocity feedback for minimizing the velocity response of the structure based on the H(2) optimization criterion is proposed. The objective of the optimal design is to reduce the total vibration energy of the vibrating structure under wideband excitation, i.e., the total area under the velocity response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure, and it can provide very good vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square velocity of the primary system as well as the active force required in the HVA. The proposed HVA was tested on single degree-of-freedom (SDOF) and continuous vibrating structures and compared to the traditional passive vibration absorber.  相似文献   

6.
This paper presents a theoretical and experimental investigation into an active vibration isolation system. Electromagnetic actuators are installed in parallel with each of four passive mounts, which are placed between a flexible equipment structure and a base structure which is either flexible or rigid. Isolation of low-frequency vibration is studied, so that the passive mounts can be modelled as lumped parameter springs and dampers. Decentralized velocity feedback control is employed, where each actuator is operated independently by feeding back the absolute equipment velocity at the same location. Good control and robust stability have been obtained both theoretically and experimentally for the multichannel control systems. This is to be expected if the base structure is rigid, in which case the actuator and sensor are, in principle, collocated and the control system implements a skyhook damper. With a flexible base structure, however, collocation is lost due to the reactive actuator force acting on the base structure, but the control system is still found to be robustly stable and to perform well. Attenuations of 20 dB are obtained in the sum of squared velocities on the equipment structure at the rigid-body mounted resonance frequencies. In addition, attenuations of up to 15 dB are obtained at the resonance frequencies of both the low order flexible modes of the base structure and the equipment structure.  相似文献   

7.
A recently reported design of a hybrid vibration absorber (HVA) which is optimized to suppress resonant vibration of a single degree-of-freedom (SDOF) system is re-optimized for suppressing wide frequency band vibration of the SDOF system under stationary random force excitation. The proposed HVA makes use of the feedback signals from the displacement and velocity of the absorber mass for minimizing the vibration response of the dynamic structure based on the H2 optimization criterion. The objective of the optimal design is to minimize the mean square vibration amplitude of a dynamic structure under a wideband excitation, i.e., the total area under the vibration response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure and it can provide significant vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square vibration amplitude of the primary system. The proposed HVA are tested on a SDOF system and continuous vibrating structures with comparisons to the traditional passive vibration absorber.  相似文献   

8.
In this article, the H optimization design of a hybrid vibration absorber (HVA), including both passive and active elements, for the minimization of the resonant vibration amplitude of a single degree-of-freedom (sdof) vibrating structure is derived by using the fixed-points theory. The optimum tuning parameters are the feedback gain, the tuning frequency, damping and mass ratios of the absorber. The effects of these parameters on the vibration reduction of the primary structure are revealed based on the analytical model. Design parameters of both passive and active elements of the HVA are optimized for the minimization of the resonant vibration amplitude of the primary system. One of the inherent limitations of the traditional passive vibration absorber is that its vibration absorption is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The proposed HVA overcomes this limitation and provides very good vibration reduction performance even at a low mass ratio. The proposed optimized HVA is compared to a recently published HVA designed for similar propose and it shows that the present design requires less energy for the active element of the HVA than the compared design.  相似文献   

9.
This work examines the characteristics of a unique active vibration isolator and develops a control strategy for it. The proposed active vibration isolator is introduced and its dynamic model is presented. A characterization study is conducted to identify system parameters. It is shown that with a simple proportional feedback the closed-loop system has a very narrow stability margin due to the inherent dynamics of the actuator. To improve the stability of the closed-loop system and enhance the performance of vibration isolation, a phase compensator is incorporated in the control scheme. An optimization problem is formulated to determine the optimum controller parameters by minimizing the 2nd norm of the displacement transmissibility. Both absolute position feedback and relative position feedback are considered. In real time implementation, an automatic on/off switching strategy is devised to take full advantage of both the active isolator and passive isolator. The experimental results show that with the proposed control scheme, the isolator is capable of suppressing base excitations effectively.  相似文献   

10.
A system consisting of a primary structure coupled with a passive tuned vibration absorber is experimentally studied. The primary structure consists of four flexible columns with a mass, while the absorber consists of a beam with a tip-mass. The system, which is a coupled non-linear oscillator, is subjected to sinusoidal and random excitation. The effects of the forcing frequency, forcing amplitude, mass ratios and frequency ratios on the displacement response of the system in the neighborhood of the autoparametric region are studied. Control parameters related to effectiveness of the absorber are determined. The objective of this study is to experimentally define an absorption region for the passive vibration absorber and to determine the parameters that influence the effectiveness of the vibration absorber.  相似文献   

11.
This paper presents experimental as well as analytic results on a rotational-pendulum vibration absorber. The characteristic frequencies of the absorber can be tuned dynamically by adjusting the rotational speed. The device is coupled to the primary structure through a mechanical spring, thus possessing two natural modes of vibrations in the vertical plane. When the primary structure is excited by a harmonic disturbance of which the frequency matches one of the two natural frequencies, the oscillations will be minimized. Whether the pendulum absorber is operating in a resonant mode can be detected by measuring the phase difference between the motions of the primary structure and the absorber, which provides an efficient way to tune the rotational speed for optimal performance. Experimental results confirm the theoretical developments and also demonstrate the effectiveness of the proposed scheme.  相似文献   

12.
罗东云  程冰  周寅  吴彬  王肖隆  林强 《物理学报》2018,67(2):20702-020702
振动噪声的有效隔离是冷原子重力仪的关键技术之一.为了减小冷原子重力仪中拉曼反射镜的振动噪声,研制了一套紧凑型低频主动隔振系统.其原理是利用滑模鲁棒控制系统处理和反馈由地震仪采集到的振动信号,利用音圈电机控制和消除被动隔振平台的运动.在0.1—10 Hz频域范围内,滑模鲁棒控制系统的残余振动噪声功率谱密度比被动隔振平台最大降低了99.9%,比超前滞后补偿控制方法最大降低了83.3%.滑模鲁棒控制算法还具有整定参数少、抗干扰能力强等特点.  相似文献   

13.
This paper presents a study on the design and use of a small scale proof mass electrodynamic actuator, with a low mounting resonance frequency, for velocity feedback control on a thin rectangular panel. A stability-performance formula is derived, which can be effectively used to assess the down scaling effects on the stability and control performance of the feedback loop. The design and tests of a velocity feedback loop with a prototype small scale proof mass actuator are also presented. When a feedback control having a gain margin of about 6 dB is implemented, so that there is little control spillover effect around the fundamental resonance of the actuator, reductions of vibration between 5 dB and 10 dB in the frequency band between 80 Hz and 250 Hz have been measured at the control position.  相似文献   

14.
This paper deals with the multi-frequency harmonic vibration suppression problem in forced Duffing mechanical systems using passive and active linear mass–spring–damper dynamic vibration absorbers. An active vibration absorption scheme is proposed to extend the vibrating energy dissipation capability of a passive dynamic vibration absorber for multiple excitation frequencies and, simultaneously, to perform reference position trajectory tracking tasks planned for the nonlinear primary system. A differential flatness-based disturbance estimation scheme is also described to estimate the unknown multiple time-varying frequency disturbance signal affecting the differentially flat nonlinear vibrating mechanical system dynamics. Some numerical simulation results are provided to show the efficient performance of the proposed active vibration absorption scheme and the fast estimation of the vibration disturbance signal.  相似文献   

15.
This paper addresses the issue of design of a passive vibration absorber in the presence of uncertainties in the forcing frequency. A minimax problem is formulated to determine the parameters of a vibration absorber which minimize the maximum motion of the primary mass over the domain of the forcing frequency. The limiting solutions corresponding to the forcing frequency being unrestricted and to that where the forcing frequency is known exactly, are shown to match those available in the literature. The transition of the optimal vibration absorber parameters between the extreme two cases is presented and the solutions are generalized by permitting the mass ratio of the absorber mass and the primary mass to be design parameters. For the specific case where the primary system is undamped, detailed analysis is presented to determine the transition of the optimal vibration absorber parameters between three distinct domains of solutions.  相似文献   

16.
Finite element modelling of laminated structures with distributed piezoelectric sensor and actuator layers and control electronics is considered in this paper. Beam, plate and shell type elements have been developed incorporating the stiffness, mass and electromechanical coupling effects of the piezoelectric laminates. The effects of temperature on the electrical and mechanical properties and the coupling between them are also taken into consideration in the finite element formulation. The piezoelectric beam element is based on Timoshenko beam theory. The plate/shell element is a nine-noded field-consistent element based on first order shear deformation theory. Constant-gain negative velocity feedback, Lyapunov feedback as well as a linear quadratic regulator (LQR) approach have been used for active vibration control with the structures subjected to impact, harmonic and random excitations. The influence of the pyroelectric effects on the vibration control performance is also investigated. The LQR approach is found to be more effective in vibration control with lesser peak voltages applied in the piezo actuator layers as in this case the control gains are obtained by minimizing a performance index. The application of these elements in high-performance, light-weight structural systems is highlighted.  相似文献   

17.
This study presents a novel resonant fuzzy logic controller (FLC) to minimize structural vibration using collocated piezoelectric actuator/sensor pairs. The proposed fuzzy controller increases the damping of the structures to minimize certain resonant responses. The vibration absorber is first experimentally examined by a cantilever beam test bed for impulse and near-resonant excitation cases. Moreover, the effectiveness of the new fuzzy control design to a state-of-the-art control scheme is compared through the experimental studies. The experimental results indicate the proposed controller is highly promising for this application field. Our results further demonstrate that the fuzzy approach is much better than traditional control methods. In summary, a novel vibration absorption scheme using fuzzy logic has been demonstrated to significantly enhance the performance of a flexible structure with resonant response.  相似文献   

18.
This paper investigates the novel development of a mass sensitive nanosensor based on the use of individual spherical fullerenes. The main advantage of the mass sensing ability of spherical fullerenes in comparison with other nanomaterials such as carbon nanotubes (CNTs) or graphene nanoribbons (GNRs) is the fact that they present almost perfect geometric symmetry and thus a unique vibrational behavior which is independent from the location of the externally added nanoparticle. The study is conducted by the use of a computationally effective numerical scheme based on the adoption of appropriate three dimensional line spring elements as well as point mass elements to simulate the atomistic structure of fullerenes and interatomic interactions appearing between carbon atoms. The free vibration of C20, C60, C80 and C180 molecules is analyzed without and with an external nanoparticle of specific mass attached on their structure to calculate the arisen change in their natural frequencies and corresponding shape modes. A parametric study concerning the magnitude and location of the added mass is performed in order to evaluate the mass sensing ability of the fullerenes under consideration.  相似文献   

19.
Wen FL  Yen CY  Ouyang M 《Ultrasonics》2003,41(6):437-450
The purpose of this study is to gain the knowledge and experience in the design of thin-disk piezoceramic-driving ultrasonic actuator dedicated. In this paper, the design and construction of an innovative ultrasonic actuator is developed as a stator, which is a composite structure consisting of piezoceramic (PZT) membrane bonded on a metal sheet. Such a concentric PZT structure possesses the electrical and mechanical coupling characteristics in flexural wave. The driving ability of the actuator comes from the mechanical vibration of extension and shrinkage of a metal sheet due to the converse piezoelectric effect, corresponding to the frequency of a single-phase AC power. By applying the constraints on the specific geometry positions on the metal sheet, the various behaviors of flexural waves have been at the different directions. The rotor is impelled by the actuator with rotational speeds of 600 rpm in maximum using a friction-contact mechanism. Very high actuating and braking abilities are obtained. This simple and inexpensive structure of actuator demonstrates that the mechanical design of actuator and rotor could be done separately and flexibly according to the requirements for various applications. And, its running accuracy and positioning precision are described in Part II.A closed loop servo positioning control i.e. sliding mode control (SMC) is used to compensate automatically for nonlinearly mechanical behaviors such as dry friction, ultrasonic vibrating, slip-stick phenomena. Additionally, SMC scheme has been successfully applied to position tracking to prove the excellent robust performance in noise rejection.  相似文献   

20.
磁悬浮-气囊主被动混合隔振装置理论和实验   总被引:2,自引:0,他引:2       下载免费PDF全文
何琳  李彦  杨军 《声学学报》2013,38(2):241-249
为了更有效地控制舰船动力机械宽频和低频线谱振动的传递,提出了一种将磁悬浮作动器与气囊隔振器集成应用的磁悬浮-气囊主被动混合隔振装置。通过对磁悬浮作动器机电耦合特性和混合隔振系统动力学特性的分析研究,确定了满足线谱振动控制要求和满足混合隔振装置性能要求的参数设计方法。针对主动控制时,FxLMS (filtered-x least mean square)算法在小阻尼系统上需用高阶FIR滤波器建模,运算量大的问题,提出了分频段控制的改进FxLMS算法,并有效地解决了作动器的非线性效应问题。样机实验结果表明:理论分析是正确的,该项技术控制力需求小,装置稳定性好,具有优良的宽频隔振和低频线谱振动控制效果。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号