首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new method for the extraction-spectrophotometric determination of V(V) is proposed. The violet complex V(V)-5,5′-dithiodisalicylhydroxamic acid formed in aqueous medium (pH 5.0) is extracted into a solution of trioctylmethylammonium chloride (Adogen 464) in toluene, and its spectrophotometric characteristics are studied. The stoichiometry of the complexes formed is 1:1 and 2:1 (reagent:vanadium), and 1:3 for the ionic association complex (2:1):trioctylmethylammonium ion. The system follows Beer's law at pH 5.0 (λ = 550 nm) over the concentration range 0.4 to 2.0 ppm (ε = 7.34 × 103 liter · mol−1 · cm−1). The method is applied for the determination of vanadium in steel.  相似文献   

2.
In acetate buffer medium palladium(II) ions form with promazine hydrochloride (PM) two complexes: an orange one of a formula [Pd(C17H20N2S)]2+max = 460 nm, ε = 4.5 × 103, at 20 °C and pH = 2) and a violet one of a formula [Pd(C17H20N2S)2]2+max = 540 nm, ε = 8.8 × 103 at 20 °C and pH = 2).The values for instability constants determined by Bjerrum's method amount to pK1 = 3.95; pK2 = 3.07; pβ1 = 3.95; pβ2 = 7.02, respectively.A colorimetric method of the determination of palladium(II) has been elaborated. The method consists in a measurement of the absorbance of the violet complex of palladium(II) with promazine hydrochloride at λ = 540 nm. The method permits the determination of 2–17 μg Pd/ml with an error of ±2%. The time of the determination is 20 min. Iron(III), Ce(IV), Pt(IV), V(V), Cr(VI), and HNO3 interfere with the determination.  相似文献   

3.
Cationic surfactants, such as cetylpyridinium bromide (CPB), sensitize the color reaction of Nb(V) with 1-(2-benzothiazolylazo)-2-hydroxy-3-naphthoic acid (Ia), 5-(benzothiazolylazo)2,5-naphthalenediol (Ib), 5-(2-benzothiazolylazo)8-hydroxyquinoline (Ic) and 4-(2- benzothiazolylazo)2, -biphenyldiol (Id) reagents. The formation of a ternary complex of stoichiometric ratio 1:2:2 (Nb-R-CPB) is responsible for the observed enhancement in the molar absorptivity and the Sandell sensitivity of the formed complex, when a surfactant is present. The ternary complex exhibits absorption maxima at 649, 692, 661 and 612 nm, (=3.35×104, 3.59×104, 4.46×104 and 2.79×104 l mol−1 cm−1) on using reagent Ia, Ib, Ic, and Id, respectively. Beer’s law is obeyed between 0.05 and 2.50 μg ml−1, while applying the Ringbom method for more accurate results is in the range from 0.20 to 2.30 μg ml−1. Conditional formation constants in the presence and absence of CPB for niobium complexes have been calculated. On the basis of a detailed spectrophotometric study, the nature of the chromophoric reagent–surfactant interaction and the peculiar features of the sensitization by CPB are discussed.  相似文献   

4.
We have studied spectrophotometrically the Pseudopurpurin-Pd(II) complex in an ethanolic-water medium ¦Ethanolamine ¦optimum = 4 × 10−1M; λ = 670 nm; 20% H2O; stable for at least 4 hr; ¦Reagent¦optimum = 5 × 10−5M; stoichiometry 2:2; log K = 17.7. A new method for the spectrophotometric determination of Pd traces is proposed for concentrations between 0.30 and 2.40 ppm. The relative error and the interferences of the method have been investigated.  相似文献   

5.
The voltammetric behavior of the LMF-Mg(II) complex with DNA at a mercury electrode is reported for the first time. In NH3–NH4Cl buffer (pH=9.10), the adsorption phenomena of the LMF–Mg(II) complex were observed by linear sweep voltammetry. The mechanism of the electrode reaction was found to be a reduction of LMF in the complex, and the composition of the LMF–Mg(II) complex is 2:1. In the presence of calf thymus DNA (ctDNA), the peak current of LMF–Mg(II) complex decreased considerably, and a new well-defined adsorptive reduction peak appeared at −1.63 V (vs. SCE). The electrochemical kinetic parameters and the binding number of LMF–Mg(II) with ctDNA were also obtained. Moreover, the new peak currents of LMF–Mg(II)–DNA system increased linearly correlated to the concentration of DNA in the 4.00×10−7–2.60×10−6 g ml−1 range when the concentrations of LMF–Mg(II) complex was fixed at 5.00×10−6 mol l−1, with the detection limits of 2.33×10−7 g ml−1. An electrostatic interaction was suggested by electrochemical method.  相似文献   

6.
Ionophoric, extraction, acidic and hydrophobic properties of 3-(4-tolylazo)phenylboronic acid (TAPBA) were studied. Determined Kd value equals to 36±2, pKa equals to 8.6±0.5. TAPBA extracts dobutamine from water into chloroform and transports it across a bulk chloroform membrane. The recovery is 83% (pH=7.5), the transport rate – (6.5±0.5)×10−7 mol/h. 1H and 13C NMR data confirm the formation of an 1:1 complex between arylboronic acid and catecholamine. TAPBA was used as electrode-active component of plasticized membrane electrodes with cationic and anionic responses to catecholamines and phenolic acids, respectively. For the diethyl sebacate-plasticized membrane, a slope of electrode function to dobutamine is 56±2 mV/decade; the detection limit is 1.3×10−5 mol/l; the linear range – 5×10−5–1×10−2 mol/l; the working pH-range – 4.8–7.6; the response time – 5–10 s. ISE gives incomplete cationic function to less lipophilic catecholamines. The membrane with cationic additive shows an anionic response to caffeic acid in wide pH range.  相似文献   

7.
Based on the mechanism of 2,4,6-Trinitrotoluene (TNT) degradation, an amperometric hydrogen peroxide biosensor was constructed for the determination of trace amounts of TNT by immobilization of MWCNTs, HRP and Nafion onto the surface of glassy carbon electrode (GCE). The Nafion/MWCNTs/HRP biosensor was capable of degrading TNT with the consumption of H2O2 and HRP in 0.2 mol/L PBS (pH 7.0). Trace TNT was quantitative analyzed by the current decrease of H2O2 at the reductive potential of −0.35 V using cyclic voltammetry (CV). Effect of the ratio of MWCNTs/HRP, initial concentration of H2O2 and electrolyte’s pH were also optimized by CV. Under the optimal conditions, the current decrease of H2O2 that was consumed by TNT degradation was proportional to TNT ranging from 8.8 × 10−9 mol/L to 2.64 × 10−7 mol/L with a detection limit of 3.0 × 10−9 mol/L (S/N = 3). It developed a new way for simple, rapid and sensitive measurement of trace TNT.  相似文献   

8.
Semiautomatic methods are described for the catalytic titrimetric determination of microamounts of silver and mercury(II) using a chloramine-T-selective electrode as monitor. The methods are based on the inhibitory effect of Ag(I) and Hg(II) on the iodide-catalyzed chloramine-T-arsenite and chloramine-T-H2O2 reactions. Microamounts of silver in the range 0.2–200 μg (1 × 10−7−1 × 10−4 M) and of mercury(II) in the range 0.1–200 μg (2.5 × 10−8−5 × 10−5 M) were determined using the chloramine-T-As(III) indicator reaction. Mercury(II) in the range 4–2000 μg (1 × 10−6−5 × 10−4 M) was also determined using the chloramine-T-H2O2 indicator reaction. The accuracy and precision were in the range 0.1–1%.  相似文献   

9.
A sensitive spectrophotometric method for the determination of copper(II) based on a ternary complex with chromal blue G, a triphenylmethane reagent in the presence of cetyltrimethylammonium chloride, is described. The sensitivity of color reaction between copper and chromal blue G has been greatly increased by the sensitizing action of cetyltrimethylammonium chloride, a cationic surfactant. The color development of the ternary complex can be utilized in the highly sensitive spectrophotometric determination of copper. The molar absorptivity of the binary complex between copper and chromal blue G ε630nm = 9.56 × 103liters · mol−1 · cm−1 is enchanced on ternary complex formation to ε542 nm = 4.78 × 104liters · mol−1 · cm−1. The ternary complex gave a maximal absorbance at 542 nm in the pH range 9.8–11. Beer's law is obeyed up to at least 1.2 ppm of copper. The maximal absorbance of the ternary complex was found to develop within 5 min and then it remains constant for several hours. The formation constant of the ternary complex is calculated to be 8.6 × 1010 under these conditions.  相似文献   

10.
Extraction of vanadium-4-(2-thiazolylazo)resorcinol complexes by quaternary salts such as triphenylmethylarsonium iodide, tetraphenylarsonium chloride, and tetraphenylphosphonium chloride has been studied. Quantitative extraction is achieved with tetraphenylarsonium and tetraphenylphosphonium chlorides in the pH region between 3.5 and 5. The optimum conditions for the extraction and spectrophotometric determination of vanadium in the extract are: pH 3.8–4.0, the concentration of vanadium 0.1–0.4 μg/ml. Effective molar absorptivity at λmax = 555 is (2.55 ± 0.05) × 104 liters mol−1 cm−1. Beer's law is obeyed. Relative standard deviation is 2–10% depending on the concentration level. The composition of the extracted complexes was studied in the solution and in the solid state. For their characterization chemical and spectral evidence and comparison with the vanadium-PAR complexes have been combined.  相似文献   

11.
Heterogeneous electrocatalytic reduction of hydrogen peroxide (H2O2) by C60 is reported for the first time. C60 is embedded in tetraoctylammonium bromide (TOAB) film and is characterized by scanning electron microscopy and cyclic voltammetry. Electrocatalytic studies show that the trianion of C60 mediates the electrocatalytic reduction of H2O2 in aqueous solution containing 0.1 M KCl. Application of such film modified electrode as an amperometric sensor for H2O2 determination is also examined. The sensor shows a fast response within 1 s and a linear response is obtained (R = 0.9986) in the concentration range from 3.33 × 10−5 to 2.05 × 10−3 mol L−1 for H2O2, with the detection limit of 2 × 10−5 mol L−1 and the sensitivity of 1.65 μA mM−1. A good repeatability and stability is shown for the sensor during the experiment.  相似文献   

12.
Pulse radiolysis transient UV–visible absorption spectroscopy was used to study the UV–visible absorption spectrum (225–575 nm) of the phenyl radical, C6H5(), and kinetics of its reaction with NO. Phenyl radicals have a strong broad featureless absorption in the region of 225–340 nm. In the presence of NO phenyl radicals are converted into nitrosobenzene. The phenyl radical spectrum was measured relative to that of nitrosobenzene. Based upon σ(C6H5NO)270 nm=3.82×10−17 cm2 molecule−1 we derive an absorption cross-section for phenyl radicals at 250 nm, σ(C6H5())250 nm=(2.75±0.58)×10−17 cm2 molecule−1. At 295 K in 200–1000 mbar of Ar diluent k(C6H5()+NO)=(2.09±0.15)×10−11 cm3 molecule−1 s−1.  相似文献   

13.
A sensitive extraction-spectrophotometric method of the determination of osmium, taking advantage of the ion-associate of the chloride osmium anion with brilliant green has been developed. The complex is extracted from aqueous phase with a mixture of C6H5Cl + CCl4 (3 + 1). Molar absorptivity () at 640 nm is 1.95 × 105 liters mol−1cm−1 (specific ABSORPTIVITY = 1.03). The relative standard deviation is 1–3%. The mole ratio of Os:BG in the complex is 1:3. Platinum metals interfere with the determination of osmium. The determination can be highly selective after preliminary separation of osmium by distillation as OsO4.  相似文献   

14.
Ethylisobutrazine hydrochloride is proposed as a selective and sensitive reagent for the spectrophotometric determination of vanadium(V). It forms a red-colored species with vanadium(V) in 3.5–6.5 M phosphoric acid medium. An eight-fold molar excess of reagent is necessary for the full development of the color. The red species exhibits an absorption maximum at 518 nm with a molar absorptivity of 9.75 × 103 liters mol−1 cm−1. Sandell's sensitivity is 5.2 ng cm−2. Beer's law is obeyed over the range 0.1–6.2 ppm of vanadium(V) with an optimum concentration range of 0.4–6.0 ppm. The effects of acidity, time, temperature, order of addition of reagents, reagent concentration, and the interferences from various ions, are reported. The method has been used successfully for the determination of vanadium in ilmenite and vanadium steels that contain chromium, molybdenum, manganese, nickel, copper, tungsten, and titanium.  相似文献   

15.
A detailed study of the electrochemical reduction of diacetylbenzene A in aqueous medium between Ho = −5 and pH 14 is presented. The reactants are strongly adsorbed, so that the reactions are of a surface nature. From Ho = −5 to pH 6, a global 2e reduction yielding an enediol-type intermediate occurs. Analysis using the theory of the square schemes with protonations at equilibrium shows that, up to pH 4, the reaction is controlled by the first electron uptake, the paths being successively H+e and eH+. The elementary electrochemical surface rate constants are 9.6 × 107 s and 1.2 × 106 s for AH+ and A respectively. From pH 6 to 14, a le adsorption wave, corresponding to the formation of (a) monoradical(s), appears and is followed by a le wave due to the reduction of the radical(s). A dimerization occurs, due to the coupling A + AH, as in the case of the monocarbonyl compounds. The rate of this surface process, kd = 5 × 1013 cm2 mol−1 s−1, is markedly smaller than the rate of the homogeneous reaction obtained in alkaline ethanol by Savéant et al. for the coupling of the radicals of benzaldehyde, benzophenone and acetophenone.  相似文献   

16.
Conditions of the selective sorption–spectrometric determination of vanadium(IV) and vanadium(V) using sulfonitrophenol M were found. The determination of vanadium (visual test (RSD = 30%) using a reference color scale or quantitative determination (RSD < 10%) by diffuse reflectance spectra is performed immediately after the dynamic-mode sorption of its colored complexes with sulfonitrophenol M at pH 3.5 (vanadium(IV)) or with sulfonitrophenol M and hydroxylamine at pH 1.5 (vanadium(V), 650 nm) at the surface of polyamide membrane disks (d= 1 cm, l= 0.1 mm, m= 2.7 mg). The flow rate is 10–20 mL/min. The detection limit is 5–7 ng of vanadium in the support zone or 0.2–0.5 ng/mL. The determination of 0.5–5 ng/mL vanadium(V) at pH 1.5 does not interfere with 20-fold amounts of V(IV) and 1000-fold amounts of Ni, Zn, Cd, Mg, Co, Cr(III), Mn, PO3- 4, and F.  相似文献   

17.
The adsorption isotherms of 2-amino-5-nitropyridine (ANP) on the (111) and (210) silver faces from an aqueous solution of 0.09 M KClO4 + 0.02 M NaOH were determined at −0.4 V vs. the 1 mol−1 calomel electrode using double-potential-step chronocoulometry. The surface concentration ΓANP of ANP was obtained by stepping the applied potential from −0.4 V, where ANP is electroinactive, to −1.2 V, where ANP is electroreduced to 2,5-diaminopyridine. The charge involved in this step, once corrected for the diffusive and capacitive contributions, yields 6FΓANP directly. The maximum surface concentration and standard Gibbs energy of adsorption are equal to 3.6 × 10−10 mol cm−2 and −35 kJ mol−1 on Ag(111) and 5.2 × 10−10 mol cm−2 and 42 kJ mol−1 on Ag(210), thus demonstrating the strong effect of surface crystallography on the energetics of ANP adsorption.  相似文献   

18.
The electrical conductivity of the crystallized polyphosphates Li3Ba2(PO3)7, LiPb2(PO3)5, LiCs(PO3)2, and αLiK(PO3)2 has been determined at different temperatures by impedance spectroscopy. The conductivity, σ, spreads within a range of 1.59 × 10−8 to 1.79 × 10−7 S cm−1 at 573 K, and from 1.71 × 10−5 to 9.86 × 10−4 S cm−1 at 773 K. The transport should be assumed in the majority by the lithium ions with regard to the structural characteristics of these polyphosphates. The results are discussed and compared to the conductivity properties of other lithium ion conductors.  相似文献   

19.
Gold in iron ore samples is separated from iron (major matrix cation), antimony and vanadium using anion exchange resin in (0.2 M) HBr, potassium peroxodisulfate and acetone:water:nitric acid media. The exchangeable anion Cl of the ion exchanger Dowex 1X 4 is replaced by Br using (6 M) HBr solution. Certified reference material DGP-M1, spiked ferric magnetic oxide, gold radioactive tracer 198Au and gold standard solutions are used to study the adsorption efficiency and the yield recovery of tetrabromoaurate AuBr4 from the resin. Ten eluents have been tried to elute gold from the column, and it has been found that a 10 ml potassium peroxodisulfate and 240 ml acetone:water:nitric acid [125:5:5] solution fulfills the objective. The set up of the separation procedure allows quantitative adsorption of gold by the resin, while the major matrix cation (Fe) and others (Cd, Ag, Cu, V, Sb, Ti) have been passed through the column with the feeding solution (0.2 M) HBr. The resin selectivity coefficient (K) of separating Au from Fe has been found to be KFeAu≈6.4×1011. The eluted Au is treated with K2S2O8 and H2O2 for spectrophotometric determination as rhodamine-B complex at 555.6 nm. The linearity, detection limit, precision, and accuracy of the determination method have been found to be up to 2.0 μg g−1, 0.018 μg g−1, 0.009 μg g−1 and 3%, respectively.  相似文献   

20.
The electrochemical behavior of myoglobin (Mb) and hemoglobin (Hb) was investigated with a boron-doped diamond (BDD) electrode by cyclic voltammetry. In acetate buffer solutions, the oxygen reduction at the BDD electrode showed a very high overpotential while the reduction of Mb or Hb was observed in the more positive potential region. Owing to the electrocatalytic reaction of O2 and the participation of H+ following the electrochemical reduction of ferric proteins, the voltammetric responses for Mb and Hb on the BDD electrode in the negative going scans became remarkable in acidic buffer solutions in air. The peak current was linearly proportional to the concentration of Mb in the range 1×10−6–2×10−5 M or the concentration of Hb from 1×10−6 to 1×10−5 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号