首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dispersion properties of slow electromagnetic surface waves propagating across a constant external magnetic field and along a plane plasma-metal interface at harmonics of the ion cyclotron frequency are studied. The motion of the plasma particles is described by a Vlasov-Boltzmann kinetic equation. The effects of the plasma size, the dielectric permittivity of the transition region between the plasma and metal, and the magnitude of the constant external magnetic field on the dispersion characteristics of ion surface cyclotron waves are studied. Zh. Tekh. Fiz. 69, 83–89 (October 1999)  相似文献   

2.
The dispersion relation of electromagnetic waves propagating perpendicular to an applied uniform magnetic field B0 in relativistic plasma is derived. Waves propagating perpendicular to the uniform applied magnetic field can be separated into two modes - one is the linearly polarized transverse wave and the other is a hybrid mode. In the present analysis, dispersion relation of the first mode i. e., for a pure transverse wave is analysed under the assumption that the wavelength is much longer than the cyclotron radii of the electrons. A stability criterion which limits the thermal energy of the electrons along B0 is obtained.  相似文献   

3.
The band spectrum of cyclotron waves propagating in a periodic layered semiconductor-insulator structure at an angle to an external magnetic field that is applied perpendicularly to the layers is calculated for two relationships between the characteristic frequencies of the semiconductor: ωHP and ωHP. The wave field distributions across the layers and over the period of the structure are analyzed. In both spectra, transmission bands arise when the conditions for dimensional resonance across the semiconductor layer are fulfilled. The graphic solution of the dispersion relation demonstrates that the cyclotron wave spectrum can be subdivided into two spectra of normal waves according to the Bloch wavenumbers of the periodic structure. The cases where the band spectra complement each other or overlap are considered.  相似文献   

4.
This paper presents an investigation of the resonant excitation of the electrostatic ion cyclotron wave at the difference frequency of two microwave beams propagating in a magnetoactive solid state plasma, viz. n InSb. The resonant excitation of the electrostatic ion cyclotron wave occurs when the difference frequency of the two microwave beams and the difference of their propagation vectors satisfy the dispersion relation corresponding to the electrostatic ion cyclotron wave. For typical plasma parameters of n InSb and microwave beams of power densities 1 MW cm?2, the power density of the excited ion cyclotron wave is 0.40 kW cm?2 when external magnetic field is 1.46 kG (Ωcω) = 0.1). The power density of the excited ion cyclotron wave increases with the magnetic field. This study may provide new means for the characterisation and diagnostic of semiconductors.  相似文献   

5.
ABSTRACT

The propagation of magnetoacoustic (fast magnetohydrodynamic) waves in pair-ion (PI) fullerene plasma is studied in the linear and nonlinear regimes. The pair-ion (PI) fullerene plasma is theorized as homogeneous, magnetized, warm and collisionless. Employing multi-fluid magnetohydrodynamic model, the dispersion relation is obtained and wave dispersion effects which appear through ion inertial length are discussed. Using reductive perturbation technique (RPT), the Korteweg–de Vries (KdV) equation is derived and its solution for small but finite amplitude magnetoacoustic solitons propagating in the direction perpendicular to the external magnetic field is presented. The compressive magnetoacoustic soliton (i.e. positive potential pulse) propagating with super Alfvénic speed is obtained in magnetized PI fullerene plasma. The variations in the amplitude and width of the magnetoacoustic soliton structures are also illustrated by using numerical values of the plasma parameters such as ions' density, temperature difference between fullerene ions and magnetic field intensity, which have been taken from the PI plasma experiments already published in the literature.  相似文献   

6.
The absorption of electron cyclotron waves propagating along an externally applied magnetic field in a uniform plasma surrounded by a cylindrical metallic cavity wall is studied. In the model, the cavity wall, the vacuum-plasma interface, and the effects of finite electron temperature are considered, and the dispersion relation for the wave propagation is derived. The results are then applied to the ELMO Bumpy Torus (EBT-I) plasma, and the propagation characteristics are computed. The wave absorption in the ordinary mode is found to be a result of the wall effects, which cannot be predicted with the infinite plasma theory. The loaded quality factor QL is also estimated from the model to be about 14, which is in good agreement with the experimentally observed value.  相似文献   

7.
Based on a numerical analysis of the dispersion relation for a hot magnetoplasma, we study the spectra of weakly damped high-frequency waves propagating in such a plasma in the case where the electron cyclotron frequency is higher than or equal to the plasma frequency. It is shown that with increasing magnetic field, the branches of the ordinary and slow extraordinary waves approach each other and become almost identical in wide ranges of frequencies and angles. A branch of waves with anomalous dispersion can appear if the angles between the wave vector and the magnetic field are close to 90°. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 2, pp. 136–141, February 2008.  相似文献   

8.
Experimental results are presented for a behavior of the electrostatic ion cyclotron waves excited in an ion beam-plasma system. This wave appears as forward and backward waves with respect to the propagating component along the magnetic field.  相似文献   

9.
Linear analysis of low frequency obliquely propagating electrostatic waves in a partially spin polarized degenerate magnetized plasma is presented. Using Fourier analysis, a general linear dispersion relation is derived for low frequency electrostatic lower hybrid(LH) wave, ion acoustic(IA) wave and ion cyclotron(IC) wave in the presence of electron spin polarization. It is found that the electron spin polarization gives birth to a new spin-dependent wave(spin electron acoustic wave) in the spectrum of these waves. Further, the electron spin polarization also causes drastic shifts in the frequency spectrum of these waves. These effects would have a strong bearing on wave phenomena in degenerate astrophysical plasmas.  相似文献   

10.
Dispersion equations for the ordinary and extraordinary cyclotron waves propagating perpendicular to the magnetic field in metals in the critical region where the wavelength is comparable to the electron Larmor radius are derived as an infinite but rapidly converging power series expansion in δ( = Ω/Ω-M). Numerical studies for the cyclotron wave propagation near the first seven resonances are carried out. The non-local behaviour of those waves in the critical region 01 ⩽ kR ⩽ 3-0 is studied. For the ordinary waves the first few resonances show significant dispersion than those near higher resonances which are dispersion-free. Only one extraordinary wave propagates near the fundamental cyclotron frequency. For the higher resonances, two modes propagate near each of the resonant frequencies, of which one mode remains constant for all values ofkR whereas the second mode shows significant dispersion. But beyond the fifth resonance both the modes are dispersion free.  相似文献   

11.
Summary Electrostatic ion cyclotron wave dispersion relation has been studied in the experiment THORELLO, a steady-state magnetized toroidal plasma, produced in different neutral gases by hot-filament electron emission and acceleration by a bias voltage. Electron temperature and density, evaluated by Langmuir probes, are of the order of 5eV and 1010 cm−3, respectively. The maximum toroidal magnetic field on the axis is about 2kG. The waves are excited by a pair of thin metallic blades, fed with opposite phase by a low power (<10 W) RF signal, and detected by a movable RF probe. An interferometric method allows the evaluation of the perpendicular wave number, for any given frequency. The fit of experimental data with theoretical curves gives the possibility to evaluate the order of magnitude of the ion temperature. To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.  相似文献   

12.
13.
We investigate the dispersion relation for long wavelength slow Langmuir waves in a relativistic particle beam propagating along a strong magnetic guide field in an evacuated metallic waveguide. For a large class of beam radial profiles, wave phase velocity drops to zero with infinite slope as beam current approaches the space-charge limit. This result is of importance to certain collective ion acceleration proposals.  相似文献   

14.
《Physics letters. A》2019,383(24):2903-2907
In degenerate quantum plasma the energy behavior of electrostatic modes propagating perpendicular to the external magnetic field is studied by employing the separated spin evolution quantum hydrodynamic (SSE-QHD) model. This model reveals that spin electron cyclotron wave (SECW) appears additionally with the upper hybrid wave (UHW). In case of SECW, the curves for the energy flow speed at different levels of spin polarization effect flip over at a particular value of wave number. The spin polarization effect enhances the energy flow speed before this value of wave number and then suppresses it afterward. The energy flow speed is enhanced by spin polarization effect in the entire range of wave number for the propagation of UHW. The Bohm potential effect drastically increases the energy flow speed at high wave number domain in both the waves. This study may find its applications to understand the energy behavior inspin polarized solid state plasmas  相似文献   

15.
We have studied the stability of the electrostatic ion cyclotron wave in a plasma consisting of isotropic hydrogen ions (H+) and temperature-anisotropic positively (O+) and negatively (O) charged oxygen ions, with the electrons drifting parallel to the magnetic field. Analytical expressions have been derived for the frequency and growth/damping rate of ion cyclotron waves around the first harmonic of both hydrogen and oxygen ion gyrofrequencies. We find that the frequencies and growth/damping rates are dependent on the densities and temperatures of all species of ions. A detailed numerical study, for parameters relevant to comet Halley, shows that the growth rate is dependent on the magnitude of the frequency. The ion cyclotron waves are driven by the electron drift parallel to the magnetic field; the temperature anisotropy of the oxygen ions only slightly enhance the growth rates for small values of temperature anisotropies. A simple explanation, in terms of wave exponentiation times, is offered for the absence of electrostatic ion cyclotron waves in the multi-ion plasma of comet Halley.  相似文献   

16.
17.
Despite the widely discussed role of whistler waves in mediating magnetic reconnection (MR), the direct connection between such waves and the MR has not been demonstrated by comparing the characteristic temporal and spatial features of the waves and the MR process. Using the whistler wave dispersion relation, we theoretically predict the experimentally measured rise time (τ(rise)) of a few microseconds for the fast rising MR rate in the Versatile Toroidal Facility at MIT. The rise time is closely given by the inverse of the frequency bandwidth of the whistler waves generated in the evolving current sheet. The wave frequencies lie much above the ion cyclotron frequency, but they are limited to less than 0.1% of the electron cyclotron frequency in the argon plasma. The maximum normalized MR rate R=0.35 measured experimentally is precisely predicted by the angular dispersion of the whistler waves.  相似文献   

18.
The fast cyclotron wave becomes unstable and is excited in a spiral electron beam-plasma system when the perpendicular energy component of the beam is sufficiently large. When a nonuniform magnetic field is applied to the system, the cyclotron frequency as well as the parallel velocity component of the beam vary spatially. It is confirmed experimentally, that the variation affects the excited wave and results in a spatial variation of its wavenumber in the way predicted by the dispersion relation of the fast cyclotron wave.  相似文献   

19.
On the basis of numerical solution of the dispersion equation, we obtain the spectra of weakly damped high-frequency waves in a hot magnetized plasma for the case where the electron cyclotron frequency ωHe is below the plasma frequency ωpe. It is shown that the longitudinal wave propagating at an angle to the magnetic field evolves into the slow extraordinary wave for the refractive index n ≤ 1. For n ≫ 1, the longitudinal-wave frequency increases with the refractive index, and the wave evolves into the wave with anomalous dispersion if the angle θ between the wave vector and the magnetic field is close to 90°. In the same range of θ angles, Bernstein modes appear in the spectrum of plasma eigenmode oscillations. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 3, pp. 258–266, March 2006.  相似文献   

20.
Magneto-acoustic waves generated by fluctuations in the Hall parameter, the electric conductivity and the stream velocity are theoretically investigated in a weakly ionized plasma streaming across a strong external magnetic field and bearing a current flowing perpendicular to both magnetic field and stream velocity. The investigations hold for seeded rare gas plasmas at any degree of seed ionization but are resticted to waves propagating in parallel or antiparallel direction to the current density vector and in parallel or antiparallel direction to the stream velocity vector and to wave lengths which are small in comparsion to the interaction length which occurs as a characteristic wave length. The influence of these waves on the mean current density and the mean Hall field intensity is calculated in case of small amplitudes and low degree of seed ionization up to second order terms. Omitting Ohmic heating the dispersion equation can be solved exactly. A phase shift exists between the fluctuations in gas density and gas velocity. The phase velocity and the amplification rate depend on the wave length. Typical results are represented in a diagram. For both types of waves the phase velocity slightly rises with increasing wave length, while the amplification rate decreases. Waves propagating in opposite direction to the current density vector are amplified, if the electron velocity exceeds a critical value. They reduce the mean current density and the mean Hall field intensity. Waves propagating in opposite direction to the stream velocity vector are also amplified except for very high degrees of seed ionization. The threshold current density is greater than that for the waves of the first type approximately by the Hall parameter as factor. At extremely high degree of seed ionization the phase velocity is directed opposite to the direction occuring at weakly ionized seed. Waves of the second type decrease the mean current density, but increase the mean Hall field intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号