首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A mesoporous SiO2-modified carbon paste electrode for the determination of uric acid is described. Owing to the regular and specific mesoporous channels, numerous active sites and a large surface area, the mesoporous SiO2-modified electrode greatly increases the oxidation peak current of uric acid. Based on this, a highly sensitive, rapid and convenient electrochemical method was developed for the determination of uric acid after optimizing the experimental parameters (supporting electrolyte, content of mesoporous SiO2, accumulation potential and time). The linear range is from 2.5 × 10−7 to 2.0 × 10−5 mol L−1, and the limit of detection is estimated to be 8.0 × 10−8 mol L−1. The relative standard deviation for 10 mesoporous SiO2-modified electrodes is 5.8%. The method was used to determine uric acid in human serum samples. Correspondence: Kangbing Wu, Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074, P.R. China  相似文献   

2.
Carboxyl group-functionalized single-walled carbon nanotubes (SWNTs) and 2,6-pyridinedicarboxylic acid (PDC) were electropolymerized by cyclic voltammetry on a glassy-carbon electrode (GCE) surface to form composite films (SWNTs/PDC). Zirconia was then electrodeposited on the SWNTs/PDC/GCE from an aqueous electrolyte containing ZrOCl2 and KCl by cycling the potential between −1.1 V and +0.7 V at a scan rate of 20 mV s−1. DNA probes with a phosphate group at the 5′ end were easily immobilized on the zirconia thin films, because of the strong affinity between zirconia and phosphate groups. The sensors were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). EIS was used for label-free detection of the target DNA by measuring the increase of the electron transfer resistance (R et) of the electrode surface after the hybridization of the probe DNA with the target DNA. The PAT gene fragment and polymerase chain reaction (PCR) amplification of the NOS gene from transgenically modified beans were satisfactorily detected by use of this DNA electrochemical sensor. The dynamic range of detection of the sensor for the PAT gene fragment was from 1.0 × 10−11 to 1.0 × 10−6 mol L−1 and the detection limit was 1.38 × 10−12 mol L−1.  相似文献   

3.
 An electrochemical study of the doxazosin oxidative process at carbon paste electrodes using different voltammetric techniques has been carried out. The process is irreversible and controlled by adsorption, giving rise to an oxidation wave around 1.0 V in citric acid-citrate buffer (pH 3.0). A mechanism based on the oxidation of the amine group is postulated. Two methods based on adsorptive stripping (AdS) of doxazosin at the C8-modified carbon paste electrode (C8-MCPE), before its voltammetric determination, are studied, using differential pulse voltammetry (DPV) and square wave voltammetry (SWV) as redissolution techniques. By means of AdS-DPV and C8-MCPE, doxazosin can be determined over the 1.0 × 10−9 to 3.0 × 10−8 mol L−1 range with a variation coefficient of 2.2% (2.0 × 10−8 mol L−1) and a limit of detection of 7.4 ×10−10 mol L−1. If AdS-SWV is used, a linear range from 1.0 × 10−9 to 4.0 × 10−8 mol L−1 is obtained, the variation coefficient being 2.8% (2.0 × 10−8 mol L−1, and the limit of detection reached 7.7 × 10−10 mol L−1. The AdS-DPV procedure was applied to the determination of doxazosin in urine and formulations. Received March 13, 1999. Revision December 23, 1999.  相似文献   

4.
A self-assembled electrode with a meso-2,3-dimercaptosuccinic acid (DMSA) monolayer has been characterized by electrochemical quartz crystal microbalance and complex impedance analysis, surface enhanced Raman spectroscopy and cyclic voltammetry. The self-assembled electrode was used for the simultaneous electrochemical detection of epinephrine (EP) and uric acid (UA) in phosphate buffer of pH 7.7. The simultaneous oxidation of EP and UA was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), and the signals for each method were well separated with a potential difference of over 330 mV and without interference by each other. The detection limit of EP is 5.4 × 10−8 mol L−1 by CV and 5.3 × 10−8 mol L−1 by DPV and that of UA is 8.4 × 10−8 mol L−1 by CV and 4.2 × 10−8 mol L−1 by DPV. The DMSA self-assembled electrode can be applied to the simultaneous determination of EP and UA.  相似文献   

5.
Lei Zhang 《Mikrochimica acta》2008,161(1-2):191-200
A covalently modified glassy carbon electrode with cysteine has been fabricated via an electrochemical oxidation procedure and was applied to induce the electrochemical differentiation between dopamine (DA) and ascorbic acid (AA). Based on the electrostatic interactions between the negatively charged groups on the electrode surface and DA and AA, the modified electrode enhanced the oxidation of DA, reducing the overpotential by 180 mV, and hindered the oxidation of AA, shifting the oxidation potential positively by 170 mV. The peak current for DA at the modified electrode was greatly enhanced and that for AA was significantly decreased, which allows the determination of DA in the presence of AA. The differential pulse peak current was linearly dependent on DA concentration over the range of 5 × 10−6–2 × 10−4 mol L−1. The detection limit was 1.8 × 10−6 mol L−1. The selectivity and sensitivity for dopamine is due to charge discrimination and analyte accumulation. The modified electrode has been applied to the determination of DA in the presence of AA. Correspondence: L. Zhang, Department of Chemistry, College of Life and Environmental Science, Shanghai Normal University, Guilin Rd 100, Shanghai 200234, P.R. China  相似文献   

6.
A novel L-cysteine film modified electrode has been fabricated by means of an electrochemical oxidation procedure, and it was successfully applied to the electrochemical determination of acetaminophen. This method utilizes the electrooxidation of amines to their analogous cation radicals to form a chemically stable covalent linkage between the nitrogen atom of the amine and edge plane sites at the glassy carbon electrode surface. The electrochemical behaviour of acetaminophen at the film electrode was investigated in 0.1 mol L−1 phosphate buffer (pH 6.20). It was found that the redox peak current of acetaminophen was enhanced greatly on the film electrode. Linearity between the oxidation peak current and the acetaminophen concentration was obtained in the range of 1.0 × 10−4–2.0 × 10−7 mol L−1 with a detection limit of 5.0 × 10−8 mol L−1. For seven parallel detections of 1.0 × 10−5 mol L−1 acetaminophen, the relative standard deviation (RSD) was 1.46%, suggesting that the film electrode has excellent reproducibility. Application to the determination of acetaminophen in drug tablets and human urine demonstrated that the film electrode has good stability and high sensitivity.  相似文献   

7.
The electrochemical behavior of the ofloxacin–copper complex, Cu(II)L2, at a mercury electrode, and the interaction of DNA with the complex have been investigated. The experiments indicate that the electrode reaction of Cu(II)L2 is an irreversible surface electrochemical reaction and that the reactant is of adsorbed character. In the presence of DNA, the formation of the electrochemically non-active complexes Cu(II)L2-DNA, results in the decrease of the peak current of Cu(II)L2. Based on the electrochemical behavior of the Cu(II)L2 with DNA, binding by electrostatic interaction is suggested and a new method for determining nucleic acid is proposed. Under the optimum conditions, the decrease of the peak current is in proportional to the concentration of nucleic acids in the range from 3 × 10−8 to 3 × 10−6 g · mL−1 for calf thymus DNA, from 1.6 × 10−8 to 9.0 × 10−7 g · mL−1 for fish sperm DNA, and from 3.3 × 10−8 to 5.5 × 10−7 g · mL−1 for yeast RNA. The detection limits are 3.3 × 10−9, 6.7 × 10−9 and 8.0 × 10−9 g · mL−1, respectively. The method exhibits good recovery and high sensitivity in synthetic samples and in real samples.  相似文献   

8.
The fabrication and electrochemical characteristics of a penicillamine (PCA) self-assembled monolayer modified gold electrode were investigated. The electrode can enhance the electrochemical response of uric acid (UA), and the electrochemical reaction of UA on the PCA electrode has been studied by cyclic voltammetry and differential pulse voltammetry. Some electrochemical parameters, such as diffusion coefficient, standard rate constant, electron transfer coefficient and proton transfer number have been determined for the electrochemical behavior on the PCA self-assembled monolayer electrode. The electrode reaction of UA is an irreversible process, which is controlled by the diffusion of UA with two electrons and two protons transfer at the PCA/Au electrode. In phosphate buffer (pH 5.0), the peak current is proportional to the concentration of UA in the range of 6.0 × 10−5–7.0 × 10−4 mol L−1 and 2.0 × 10−5–7.0 × 10−4 mol L−1 for the cyclic voltammetry and differential pulse voltammetry methods with the detection limits of 5.0 × 10−6 and 3.0 × 10−6 mol L−1, respectively. The method can be applied to determine UA concentration in real samples.  相似文献   

9.
A simple and highly selective electrochemical method has been developed for the simultaneous determination of hydroquinone (HQ) and catechol (CC) at a glassy carbon electrode covalently modified with penicillamine (Pen). The electrode is used for the simultaneous electrochemical determination of HQ and CC and shows an excellent electrocatalytical effect on the oxidation of HQ and CC upon cyclic voltammetry in acetate buffer solution of pH 5.0. In differential pulse voltammetric measurements, the modified electrode was able to separate the oxidation peak potentials of HQ and CC present in binary mixtures by about 103 mV although the bare electrode gave a single broad response. The determination limit of HQ in the presence of 0.1 mmol L−1 CC was 1.0 × 10−6 mol L−1, and the determination limit of CC in the presence of 0.1 mmol L−1 HQ was 6.0 × 10−7 mol L−1. The method was applied to the simultaneous determination of HQ and CC in a water sample. It is simple and highly selective.  相似文献   

10.
CeO2 nanoparticles approximately 12 nm in size were synthesized and subsequently characterized by XRD, TEM and UV-vis spectroscopy. Then, a gold electrode modified with CeO2 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode demonstrated strong catalytic effects with high stability towards electrochemical oxidation of rutin. The anodic peak currents (measured by differential pulse voltammetry) increased linearly with the concentration of rutin in the range of 5.0 × 10−7–5.0 × 10−4 mol · L−1. The detection limit (S/N = 3) was 2.0 × 10−7 mol · L−1. The relative standard deviation (RSD) of 8 successive scans was 3.7% for 5.0 × 10−6 mol · L−1 rutin. The method showed excellent sensitivity and stability, and the determination of rutin in tablets was satisfactory.  相似文献   

11.
We report a sensitive and convenient voltammetric method for the direct determination of 10-hydroxycamptothecin (HCPT). At a multi-wall carbon nanotube (MWNT)-modified electrode, HCPT yields a very sensitive and well-shaped oxidation peak, which can be used as analytical signal for HCPT determination. Compared with the poor electrochemical signal at the unmodified GCE, the electrochemical response of HCPT at the MWNT-modified GCE was greatly improved, as confirmed by the significant peak current enhancement. This result indicates that the MWNT-modified GCE has great potential in the sensitive determination of HCPT. Based on this, a very sensitive and simple electrochemical method was proposed for HCPT determination after all the experimental parameters were optimized. The newly-proposed method possesses very low detection limit (2 × 10−9 mol L−1) and wider linear range (from 1 × 10−8 to 4 × 10−6 mol L−1). Rapid and simple sample analysis is another advantage. Finally, this method was successfully demonstrated using HCPT drugs.  相似文献   

12.
A poly(caffeic acid) thin film was deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. The poly(caffeic acid)-modified electrode was used for the determination of ascorbic acid (AA), dopamine (DA), and their mixture by cyclic voltammetry. This modified electrode exhibited a potent and persistent electron-mediating behavior followed by well-separated oxidation peaks toward AA and DA at a scan rate of 10 mV s−1 with a potential difference of 135 mV, which was large enough to determine AA and DA individually and simultaneously. The catalytic peak current obtained was linearly dependent on the AA and DA concentrations in the range of 2.0 × 10−5−1.2 × 10−3 and 1.0 × 10−6−4.0 × 10−5 mol L−1 in 0.15 mol L−1 phosphate buffer (pH 6.64). The detection limits for AA and DA were 9.0 × 10−6 and 4.0 × 10−7 mol L−1, respectively. The modified electrode shows good sensitivity, selectivity, and stability and has been applied to the determination of DA and AA in real samples with satisfactory results.  相似文献   

13.
A novel and reliable direct electrochemical method was established for the detection of adenine, based on the differential pulse anodic stripping response at a poly(amidosulfonic acid) (poly-ASA)-modified glassy carbon electrode (GCE) fabricated by electropolymerization. The characterization of electrochemically synthesized poly-ASA film was investigated by atomic force microscopy, electrochemical impedance spectroscopy, and voltammetric methods. This poly-ASA-modified GCE could greatly enhance the detection sensitivity of adenine. At optimum conditions, the anodic peak exhibits a good linear concentration dependence in the range from 3.0 × 10−8 to 1.0 × 10−6 M (r = 0.9994). The detection limit is 8.0 × 10−9 M (S/N = 3). The proposed method could be used to determinate the adenine in tablets of vitamin B4 with satisfactory results.  相似文献   

14.
The electrochemical behavior of epinephrine (EP) at a mercaptoacetic acid (MAA) self-assembled monolayer modified gold electrode was studied. The MAA/Au electrode is demonstrated to promote the electrochemical response of epinephrine by cyclic voltammetry. The possible reaction mechanism is also discussed. The diffusion coefficient D of EP is 6.85 × 10−6 cm2 s−1. In 0.1 mol L−1 phosphate buffer (pH 7.20), a sensitive oxidation peak was observed at 0.177 V, and the peak current is proportional to the concentration of EP in the range of 1.0 × 10−5–2.0 × 10−4 mol L−1 and 1.0 × 10−7–1.0 × 10−6 mol L−1. The detection limit is 5 × 10−8 mol L−1. The modified electrode is highly stable and can be applied to the determination of EP in practical injection samples. The method is simple, quick, sensitive and accurate.  相似文献   

15.
The potential application of ordered mesoporous carbon (OMC)-modified glassy carbon electrode (OMC/GCE) in electrochemistry as a novel electrode material was investigated. X-ray diffraction, transmission electron micrographs, and cyclic voltammetry were used to characterize the structure and electrochemical behaviors of this material. Compared to GC electrode, the peak currents of potassium ferricyanide (K3[Fe(CN)6]) increase and the peak potential separation (ΔE p) decreases at the OMC/GC electrode. These phenomena suggest that OMC-modified GC electrode possesses larger electrode area and faster electron transfer rate, as compared with bare GC electrode. Furthermore, riboflavin was detected using OMC/GC electrode in aqueous solutions. The results showed that, under an optimum condition (pH 7.0), the OMC/GC electrode exhibited excellent response performance to riboflavin in the concentration range of 4.0 × 10−7 to 1.0 × 10−6 M with a high sensitivity of 769 μA mM−1. The detection limit was down to around 2 × 10−8 M. With good stability and reproducibility, the present OMC/GC electrode was applied in the determination of vitamin B2 content in vitamin tablets, and satisfactory results were obtained.  相似文献   

16.
Guanosine-5′-monophosphate (GMP) was investigated the electrochemical behaviors based on solid-phase extractionon (SPE) at Cu-Mg-Al hydrotalcite-like compound (HTLC) modified glass carbon electrode. Cu-Mg-Al hydrotalcite-like compound (HTLC) was proved as a new sorbent for SPE of GMP, which showed an irreversible adsorption oxidation process on the HTLC/GCE with the oxidation peak potential located at 1.15 V (vs. SCE) in a pH 5.0 acetate buffer solution. Influencing factors of the electrochemical behavior of GMP on the HLTC/GCE were optimized and kinetic parameters were calculated. Under the optimal conditions, with differential pulse voltammetry (DPV), a linear relationship was obtained between the oxidation peak current and the GMP concentration in the range from 1.0 × 10− 6 to 8.0 × 10−4 mol L−1 with the detection limit as 5.0 × 10−7 mol L−1 (signal-to-noise ratio of 3). The modified electrode surface has very good reproducibility and stability.  相似文献   

17.
Electrochemical DNA biosensor was successfully developed by depositing the ionic liquid (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), ZnO nanoparticles, and chitosan (CHIT) nanocomposite membrane on a modified gold electrode (AuE). The electrochemical properties of the [EMIM][Otf]/ZnO/CHIT/AuE for detection of DNA hybridization were studied. Under optimal conditions using cyclic voltammetry, the target DNA sequences could be detected in the concentration range of 1.0 × 10−18 to 1.82 × 10−4 mol L−1, and with the detection limit of 1.0 × 10−19 mol L−1. This DNA biosensor detection approaches provide a quick, sensitive, and convenient method to be used in the identification of Trichoderma harzianum.  相似文献   

18.
The electrode characteristics and selectivities of PVC-based thiocyanate selective polymeric membrane electrode (PME) incorporating the newly synthesized zinc complex of 6,7:14,15-Bzo2-10,11-(4-methylbenzene)-[15]-6,8,12,14-tetraene-9,12-N2-1,5-O2 (I 1 ) and zinc complex of 6,7:14,15-Bzo2-10,11-(4-methylbenzene)-[15]-6,14-diene-9,12-dimethylacrylate-9,12-N2-1,5-O2 (I 2 ) are reported here. The best response was observed with the membrane having a composition of I2:PVC:o-NPOE:HTAB in the ratio of 6:33:59:2 (w/w; milligram). This electrode exhibited Nernstian slope for thiocyanate ions over working concentration range of 4.4 × 10−7 to 1.0 × 10−2 mol L−1 with detection limit of 2.2 × 10−7 mol L−1. The performance of this electrode was compared with coated graphite electrode (CGE), which showed better response characteristics w.r.t Nernstian slope 59.0 ± 0.2 mV decade−1 activity, wide concentration range of 8.9 × 10−8 to 1.0 × 10−2 mol L−1 and detection limit of 6.7 × 10−8 mol L−1. The response time for CGE and PME was found to be 8 and 10 s, respectively. The proposed electrode (CGE) was successfully applied to direct determination of thiocyanate in biological and environmental samples and also as indicator electrode in potentiometric titration of SCN ion.  相似文献   

19.
By combining the layer-by-layer (LBL) self-assembly technique with the electrochemical polymerization method, multilayer Ni(II)-polyluminol films were modified on the surface of a vaseline-impregnated graphite electrode. It was found that, compared with an electrode modified by direct electrochemical polymerization, this modified electrode offered a suitable ECL reaction micro-environment created by the special multilayer films, which was beneficial to the ephedrine hydrochloride enhancing effect for luminol ECL intensity. The ECL enhancing effect of ephedrine hydrochloride on the electro-oxidation luminol was improved on this modified electrode. Based on this finding, a new sensitive ECL method was developed for ephedrine hydrochloride determination under the optimal conditions. At the same time, a new idea is proposed for improving the analytical performance of the luminol ECL system by modifying the ECL reaction micro-environment with the layer-by-layer self- assembly method. Under the optimum experimental conditions, the ephedrine hydrochloride concentration in the range of 2.0 × 10−8–7.0 × 10−6 mol L−1 was proportional to the enhanced ECL signal, and it offered an 8.0 × 10−9 mol L−1 detection limit for ephedrine hydrochloride.  相似文献   

20.
Single-wall carbon nano-tubes were used to modify the surface of a glassy carbon electrode (GC) and applied in the determination of folic acid with voltammetry. The experiments demonstrated that the presence of a carbon nano-tube film on the electrode greatly increased the reduction peak current of folic acid. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used in a comparative investigation of the electrochemical reduction of folic acid with the film electrode. Effects of pH on the peak current and the peak potential were studied in the pH range of 4.0–8.0 with Britton-Robinson buffer solution. The reduction peak current was found to be linearly related to folic acid concentration over the range of 1 × 10−8 to 1 × 10−4 mol L−1 with a detection limit of 1 × 10−9 mol L−1 after 5 min accumulation. The film electrode provides an efficient way for eliminating interferences from some inorganic and organic species in the solution. The high sensitivity, selectivity and stability of the film electrode demonstrate its practical application from a simple and rapid determination of folic acid in tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号