首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A conjugate of 6-hydrazinopyridine-3-carboxylic acid (HYNIC) with aminomethylenediphosphonic acid (AMDP) was synthesized through a multiple-step reaction. HYNIC–AMDP could be labeled easily and efficiently with 99mTc using N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine (tricine) as coligand to form the 99mTc–HYNIC–AMDP complex in high yield (> 95%). Its partition coefficient indicated that it was a good hydrophilic complex. The biodistribution studies of 99mTc–HYNIC–AMDP in normal ICR mice showed that this complex had high bone uptake and low or negligible accumulation in non-target organs. As compared with 99mTc–MDP, 99mTc–HYNIC–AMDP had a higher bone uptake and the ratios of bone/blood and bone/muscle at early time after injection, suggesting that it could be potentially useful for bone imaging at an earlier time after injection according to further investigations of the biological behavior of this complex.  相似文献   

2.
Meropenem was successfully radiolabeled with 99mTc in high labeling yield (92 ± 2%) and stability (~6 h). 99mTc–meropenem showed high accumulation in tumor hypoxic tissue (4.193% injected dose/g organ). 99mTc–meropenem showed high ability to differentiate the tumor tissue from inflamed or infected tissues in different mice models as its T/NT ratio ~4 in case of tumor mice model while T/NT ratio ~1 in case of inflamed mice model. So, 99mTc–meropenem showed high selectivity in comparison with FDG-PET and 99mTc-nitroimidazole analogues. Thus, 99mTc–meropenem could be used as a selective potential imaging agent for diagnosis of tumor hypoxia.  相似文献   

3.
The aim of this work is the development of new radiopharmaceuticals for imaging infection and inflammation in human. Gatifloxacin (fluoroquinolone derivative) and cefepime (cephalosporine derivative) are antibiotics used to treat bacterial infections were investigated to label with one of the most important radioactive isotopes (technetium-99m). The reaction parameters that affect the labeling yield such as substrate concentration, stannous chloride dihydrate concentration, pH of the reaction mixture, and reaction time were studied to optimize the labeling conditions. Maximum radiochemical yield of 99mTc–gatifloxacin (90  ± 1.8%) complex was obtained by using 50 μg SnCl2·2H2O and 2.5 mg gatifloxacin at pH 10 while 99mTc–cefepime was prepared at pH 8 with a maximum radiochemical yield of 98  ± 1.4% by adding 99mTc to 5 mg cefepime in the presence of 50 μg SnCl2·2H2O. Biological distribution of 99mTc–gatifloxacin and 99mTc–cefepime was carried out in experimentally induced infection rats, in the left thigh, using Escherichia coli. Both thighs of the rats were dissected and counted and the ratio of bacterial infected thigh/contralateral thigh was then evaluated. T/NT for both 99mTc–gatifloxacin and 99mTc–cefepime was found to be 4.5  ± 0.3 and 8.4  ± 0.1, respectively, which was higher than that of the commercially available 99mTc–ciprofloxacin. The abscess to normal muscle ratio indicated that 99mTc–cefepime could be used for infection imaging. Besides, in vitro studies showed that 99mTc–cefepime can differentiate between bacterial infection and sterile inflammation.  相似文献   

4.
99mTc ≡ N-Pazufloxacin dithiocarbamate (99mTc ≡ N-PZN) complex was synthesized through the [99mTc ≡ N]2+ core and its aptness was radiochemically and biologically evaluated in terms of radiochemical purity (RCP) in saline, in vitro stability in serum, in vitro bacterial uptake and percent in vivo uptake in male Wister rats (MWR) artificially infected with alive and heat killed Escherichia coli (E. coli). The 99mTc ≡ N-PZN complex showed more than 90% RCP up to 4 h after reconstitution in normal saline at room temperature with a maximum RCP value of 98.40 ± 0.28% (at 30 min). At 37 °C in serum the complex showed stable behaviour up to 4 h with the appearance of 15.95% undesirable by products within 16 h of the incubation. The complex showed saturated in vitro binding with E. coli with a maximum uptake of 74.25 ± 0.50% (at 90 min). Normal biodistribution behaviour was noted with a sixfold higher accumulation in the muscle of the MWR, artificially infected with live E. coli as compared to the MWR infected with heat killed E. coli, inflamed and normal muscle. The high RCP in saline, elevated in vitro stability in serum, saturated in vitro binding with E. coli and the sixfold higher accumulation in the infected (live) muscle of the MWR as compared to the inflamed and normal muscle, recognized the aptness of the 99mTc ≡ N-PZND complex as a prospective E. coli in vivo infection radiotracer.  相似文献   

5.
The dimercaptosuccinic acid metronidazole ester (DMSAMe) was synthesized and radiolabeled with 99mTc to form the 99mTc-DMSAMe complex in high yield. The radiochemical purity of the 99mTc-DMSAMe complex was over 90%, as measured by TLC and by HPLC, without any notable decomposition at room temperature over a period of 6 h. Its partition coefficient indicated that it was a lipophilic complex. The tumor cell experiment and the biodistribution in mice bearing S 180 tumor showed that the 99mTc-DMSAMe complex had a certain hypoxic selectivity and accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time, suggesting it would be a possible tumor hypoxia imaging agent.  相似文献   

6.
Gatifloxacin (GTN) was derivatized to its dithiocarbamate derivative and its radiolabeling with technetium-99m (99mTc) using the [99mTc≡N]2+ core was investigated. The appropriateness of the 99mTcN–gatifloxacin dithiocarbamate (99mTcN–GTND) complex as a potential multi-drug-resistance Streptococcus pneumoniae (MRSP) infection radiotracer was evaluated in terms of stability in saline, serum, in vitro binding with MRSP and biodistribution in artificially MRSP infected Male Wistar Rats (MWR). In saline the 99mTcN–GTND complex showed more than 90% labeling yield up to 4 h with a maximum yield of 98.25 ± 0.20%, after reconstitution. In serum the 99mTcN–GTND complex showed stability up to 16 h of incubation with the appearance of insignificant 15.95% undesirable side products. The 99mTcN–GTND complex demonstrated saturated in vitro binding with MRSP with a maximum value of 75.50 ± 1.00% (at 90 min). In MWR model of group A, almost six times higher uptake of the labeled GTND was monitored in the muscle of MWR infected with live MRSP as compared to the inflamed and normal muscles. Based on the higher labeling yield in saline, in vitro stability in serum, saturated in vitro binding with live MRSP and promising biodistribution in MWR model we recommend 99mTcN–gatifloxacin dithiocarbamate complex as a potential MRSP infection radiotracer.  相似文献   

7.
2,2′-[(8-hydroxyquinolin-7-yl)methylazanediyl]diacetic acid (HQMADA) was synthesized via reaction of 8-hydroxyquinoline with iminodiacetic acid in presence of paraformaldehyde with a yield of 27%. The obtained compound was well characterized via different analytical techniques. Labeling of the synthesized compound with technetium-99m in pertechnetate form (99mTcO4 ) in the presence of stannous chloride dihydrate was carried out via chelation reaction. The reaction parameters that affect the labeling yield such as HQMADA concentration, stannous chloride dihydrate concentration, pH of the reaction mixture, and reaction time were studied to optimize the labeling conditions. Maximum radiochemical yield of 99mTc-HQMADA complex (91.9%) was obtained by using 1.5 mg HQMADA, 50 μg SnCl2·2H2O, pH 8 and 30 min reaction time. Biodistribution studies in mice were carried out in experimentally induced infection in the left thigh using E. coli. 99mTc-HQMADA complex showed higher uptake (T/NT = 5.5 ± 0.3) in the infectious lesion than the commercially available 99mTc-ciprofloxacin (T/NT = 3.8 ± 0.8). Biodistribution studies for 99mTc-HQMADA complex in Albino mice bearing septic and aseptic inflammation models showed that 99mTc-HQMADA complex able to differentiate between septic and aseptic inflammation.  相似文献   

8.
Pyrroloquinoline quinone (PQQ), an essential nutrient, antioxidant, redox modulator and nerve growth factor found in a class of enzymes called quinoproteins, was labeled with 99mTc by using stannous fluoride (SnF2) method. Radiolabeling qualification, quality control and characterization of 99mTc-PQQ and its biodistribution studies in mice were performed and discussed. Effects of pH values, temperature, time and reducing agents concentration on the radiolabeling yield were investigated. The quality control procedure of 99mTc-PQQ was determined by thin layer chromatography (TLC), radio high-performance liquid chromatography (RHPLC) and paper electrophoresis methods. The average radiolabeling yield was 94 ± 1% under optimum conditions of 0.99 mg of PQQ, 30 μg of SnF2, 0.5 mg of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and 18.5 MBq of Na99mTcO4 at pH 6 and 25 °C with a response volume of 1 ± 0.1 mL. 99mTc-PQQ was stable and anionic. Lipid–water partition coefficient of 99mTc-PQQ was −1.49 ± 0.16. The pharmacokinetics parameters of 99mTc-PQQ were t 1/2α = 18.16 min, t 1/2β = 100.45 min, K 12 = 0.013 min−1, K 21 = 0.017 min−1, K e = 0.016 min−1, AUC (area under the curve) = 1040.78 ID% g−1 min and CL (plasma clearance) = 0.096 mL min−1. The dual-exponential equation was Y = 10.88e−0.038t  + 5.21e−0.0069t . The biodistribution of 99mTc-PQQ was studied in ICR (Institute for Cancer Research 7701 Burhelme Are., Fox Chase, Philadelphia, PA 1911 USA) mice. In vitro autoradiographic studies clearly showed that the 99mTc-PQQ radioactivity accumulated predominantly in the hippocampus and cortex, which had a high density of N-methyl-d-aspartate Receptor (NMDAR). The enrichment can be blocked by NMDAR redox modulatory site antagonists-ebselen (EB) and 99mTc-PQQ is therefore a promising candidate for the molecular imaging of NMDAR. To date, however, there have been no studies characterizing 99mTc-PQQ.  相似文献   

9.
Metronidazole (MTNZ) is an antiprotozoa drug, could be labeled with the 99mTc. MTZL could be used as an ideal vehicle to deliver radioactive decay energy of 99mTc to the sites of tumor, thus facilitate tumor imaging. The process of labeling was done using tin chloride as reducing agent. The optimum conditions required to label 25 μg MTZL were 100 μg stannous chloride, 30 min reaction time, room temperature at pH 7–9 using 0.5 M phosphate buffer. The radiochemical purity of the labeled compound, at the above conditions, was determined using paper chromatography. The yield was about 93%. About 2.5 × l06 of Ehrlich Ascites Carcinoma (EAC) was injected intrapritoneally (i.p) to produce ascites and intramuscularly (i.m) in the right thigh to produce solid tumor in female mice. Biodistribution studies were carried out by injecting solution of 99mTc-MTZL in normal and tumor bearing mice. The uptake in ascites was over 5% of the injected dose per gram tissue body weight, at 4 h post injection and above 4% in solid tumor. These data revealed localization of the tracer in the tumor tissues with high percentage sufficient to use 99 mTc MTZL as promising tool for diagnosis of tumor.  相似文献   

10.
The labeling of garenoxacin (GXN) with technetium-99m (99mTc) using different concentrations of GXN, sodium pertechnetate (Na99mTcO4), stannous chloride dihydrate (SnCl2·2H2O) at different pH was investigated and evaluated in terms of in-vitro stability in saline, serum, binding with multi-resistant Staphylococcus aureus (MDRSA) and penicillin-resistant Streptococci (PRSC) and its biodistribution in artificially MDRSA and PRSC infected rats. 99mTc–GXN complex with 97.45 ± 0.18% radiochemical stability was prepared by mixing 3 mg of GXN with 3 mCi of Na99mTcO4 in the presence of 150 μL of SnCl2·2H2O (1 μg/μL in 0.01 N HCl) at a pH 5.6. The radiochemical stability of the complex was evaluated in normal saline up to 240 min of reconstitution. It was observed that the complex showed maximum RCP values after 30 min of the reconstitution and remained more than 90% up to 240 min. The complex showed radiochemical stability in normal saline at 37 °C up to 16 h with a 17.80% de-tagging. The complex showed saturated in-vitro binding with living MDRSA and PRSC as compared to the insignificant binding with heat killed MDRSA and PRSC. Biodistribution behavior of the complex was assessed in artificially infected with living and heat killed MDRSA and PRSC rats. It was observed that the accumulation of the complex in the infected (live MDRSA and PRSC) tissue of the rats was almost five fold than in the inflamed and normal tissue. The high radiochemical stability in normal saline at room temperature, promising in-vitro stability in serum at 37 °C, saturated in-vitro binding with living MDRSA and PRSC, specific biodistribution behavior and high infected (target) to normal (non-target) tissue and low inflamed (non-target) to normal (non-target) tissue ratios we recommend 99mTc–GXN complex for in-vivo localization of infection caused by MDRSA and PRSC effective stains.  相似文献   

11.
A novel 99mTc nitrido xanthate complex 99mTcN(IPEXT)2 (IPEXT: isopentyl xanthate) has been synthesized by the reduction of 99mTcO4 into [99mTcN]2+ with stannous chloride in the presence of succinic dihydrazide and propylenediamine tetraacetic acid, followed by the addition of the corresponding xanthate ligand. The radiochemical purity of the complex was over 90% as measured by thin layer chromatography (TLC). No decomposition of the complex at room temperature was observed over a period of 6 hours. Its partition coefficient indicated that it was a lipophilic complex. The electrophoresis results showed the complex was neutral. Biodistribution in mice showed that the 99mTcN(IPEXT)2 complex accumulated in the heart with high uptake. The heart uptake (%IDg) was 8.00% at 5-minute post-injection, but the heart/lung, heart/liver and heart/blood ratios were not high, thereby, restricting the use of the complex as a good myocardial imaging agent.  相似文献   

12.
In the present study, a novel 99mTc nitrido dithiocarbamate complex containing ether group, the bis(2-ethoxyethyl dithiocarbamato) nitrido 99mTc complex 99mTcN(EOEDTC)2 has been synthesized by the reduction of 99mTcO4 into [99mTcN]2+ with stannous chloride in the presence of succinic dihydrazide and propylenediamine tetraacetic acid, followed by the addition of the corresponding dithiocarbamate ligand. The radiochemical purity of the complex was over 90% as measured by thin layer chromatography (TLC). In vitro studies showed that the complex possessed good stability. Its partition coefficient indicated that it was lipophilic complex. The electrophoresis results showed the complex was neutral. Biodistribution in mice showed that the complex accumulated in the heart and brain with high initial uptake, suggesting the complex may lead to a further development of the radiopharmaceutical as a heart and brain perfusion tracer.  相似文献   

13.
The aim of this research is to use acetylacetonate as a 99mTc chelating agent label with porphyrin and evaluate its radiochemical and biological characteristics. Stannous chloride was used as a reductant to determine the chemical and biological characterization of 99mTc-complexes from labeling porphine{4′,4′′,4′′′-(2lH,23H-Porphine-5,10,15,20-terayl)tetrakis-(benzoic acid), TPPB} with 99mTc–pertechnetate. Instant thin layer chromatography (ITLC), size exclusion chromatography (SEC), paper electrophoresis, and UV/Vis spectrophotometry were used to evaluate chemical characterization. Finally, biodistribution and liver function tests were applied to evaluate biological characteristics. The results of this study show that the labeling efficiency of 99mTc(acac)–TPPB was nearly 100% when using acetylacetone (acac) as a conjugator. Three major 99mTc(acac)–TPPB complexes were separated by SEC, and all of them were hydrophilic. The UV-Vis spectra of 99mTc(acac)–TPPB complexes closely resembled those of the TPPB, but the wave lengths of their peaks changed 430, 521, 556, 591 and 647 nm after complexation. The biodistribution study selected the liver as the target organ. The 99mTc(acac)–TPPB complex may cause short-term liver injury. However, this injury can be repaired, and the reagent is quickly metabolized. Hence, the toxicity of the 99mTc(acac)–TPPB complex is within an acceptable range, and making it a promising liver imaging agent.  相似文献   

14.
In the recent years interests on dihydropyrimidinone and their analogues have increased potentially due to their wide range of pharmacological/biological activities. Synthesis, radiolabeling with technetium-99 m (99mTc) and biological evaluation of 5-etoxycarbonyl-4-phenyl-6-methyl-3,4-dihydro-(1H)-pyrimidine-2-one (DHPM) were studied in this present work. After synthesis complexation of DHPM with 99mTc was carried out using stannous chloride as the reducing agent. The complex (99mTc-DHPM) was characterized by thin layer chromatography, radio-HPLC technique and determination of partition co-efficient. Radiochemical stability and particle size distribution of the complex were also measured. Biodistribution/scintigraphy studies were performed in rats and rabbits to evaluate the pharmacological characteristics of this complex. The radiochemical purity of the complex was over 95% as studied by thin layer chromatography and radio-HPLC. It was stable over 24 h at room temperature. Its partition coefficient indicated that it was a lipophilic complex. According to the European Pharmacopeia, >80% of 99mTc labeled radiopharmaceutical (99mTc-MAA) in the size range 10–50 μm, must be accumulated in the lungs 15 min after intravenous administration. In this study >85% of the 99mTc-DHPM complex in the average size of 40 μm. Biodistribution studies of 99mTc-DHPM in rat revealed that the complex accumulated in the lung with high uptake and good retention after intravenous administration. Scintigraphic studies in rabbit also revealed that most of the administered radiolabeled complex was accumulated in the lungs and after 1 h slowly excreted through the renal system. The lung uptake (ID%/g) was 10.12, 9.67, 8.60 and 5.01 and the lung/liver ratio was 7.49, 2.88, 2.62 and 1.87 at 2, 15, 30 and 60 min post-injection, respectively. These results suggested that 99mTc-DHPM could be suitable as a potential lung perfusion imaging agent. Further studies with 99mTc-DHPM and its derivatives are warranted to develop new 99mTc-labeled imaging agents for clinical applications.  相似文献   

15.
This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of the 99mTc(CO)3–AOPA colchicine conjugate. The novel ligand was successfully synthesized by conjugation of N-(acetyloxy)-2-picolylamino (AOPA) to deacetylcolchicine via a short carbonyl-methylene linker. Radiolabeling was performed in high yield with [99mTc(CO)3]+ core. 99mTc(CO)3–AOPA colchicine conjugate was hydrophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that 99mTc(CO)3–AOPA colchicine conjugate accumulated in the tumor with good uptake and retention. However, its clearance from normal organs was not so fast, resulting in poor T/NT ratios. Further modification on the linker or/and 99mTc-chelate to improve the tumor targeting efficacy and in vivo kinetic profiles is currently in progress.  相似文献   

16.
Three chromium(III) complexes with asparagine (Asn) and histidine (His) of the [Cr(ox)2(Aa)]2− type, where Aa = N,O–Asn, N,O–His or N,N′–His, were obtained and characterized in solution. The complexes with N,O–Aa undergo acid-catalysed aquation to give a free amino acid and cis-[Cr(ox)2(H2O)2], whereas the complex with N,N′–His undergoes parallel reaction paths: (1) isomerization to the N,O–His complex and (2) liberation of an oxalate ligand. Kinetics of the N,O–Aa complexes in HClO4 media were studied spectrophotometrically under pseudo-first-order conditions. The absorbance changes were attributed to the chelate ring opening at the Cr–N bond. The linear dependence of rate constants on [H+] was established, and a mechanism for the chelate ring cleavage was postulated. The existence of a metastable intermediate with O-monodentate Aa ligand was proved experimentally. Effect of [Cr(ox)2(Aa)]2− on 3T3 fibroblasts proliferation was studied. The tests revealed low cytotoxicity of the complexes. Complexes with Ala, His and Cys are good candidates for biochromium sources.  相似文献   

17.
To increase the tumor uptake of Val-Gly-Gly (VGG), adenine was introduced into the peptide. N-mercaptoacetyl-VGG-adenine (MAVGG-adenine) and MAVGG were labeled with 99mTc using a solution of SnCl2 and tartaric acid as reducing agent. Biodistribution in mice bearing the S180 tumor was measured and γ imaging was performed. Compared with MAVGG, adenine conjugated MAVGG had higher tumor uptake and tumor to normal tissue ratios, which suggested that the tumor uptake property of a peptide may be improved by introducing a nucleotide base. The high contrasted tumor images of 99mTc-MAVGG-adenine also suggested its potential utility as tumor imaging agent.  相似文献   

18.
This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of [99mTc(CO)3(IDA–PEG3–CB)]. The novel chlorambucil derivative was successfully synthesized by conjugation of iminodiacetic acid (IDA) to chlorambucil via a pegylated linker. The ligand could be labeled by [99mTc(CO)3]+ core in high yield to get [99mTc(CO)3(IDA–PEG3–CB)], which was very hydrophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that [99mTc(CO)3(IDA–PEG3–CB)] accumulated in the tumor with favorable uptake and retention. The good accumulation in tumor tissue with high tumor/muscle ratios warrants further research to improve tumor targeting efficacy and pharmacokinetic profile of radiolabeled chlorambucil derivative by structural modification.  相似文献   

19.
Garenoxacin (GXN) was modified to its dithiocarbamate followed by radiolabeling with technetium-99m (99mTc) through [99mTc-N]2+ core. The suitability of the 99mTcN–Garenoxacin dithiocarbamate (GXND) complex as a potential multiresistant Staphylococcus aureus (MDRSA) and penicillin-resistant Streptococci (PRSC) infection radiotracer was assessed in artificially infected rats (AFRT). The radiolabeled complex was investigated for its radiochemical purity (RCP), permanence in serum using HPLC and TLC methods. In vitro binding with MDRSA and PRSC was performed at 37 °C. The 99mTcN–GXND showed maximum RCP of 98.00 ± 0.22% and remained more than 90% stable up to 4 h. The 99mTcN–GXND showed saturated in vitro binding with living MDRSA and PRSC, respectively. The complex showed normal biodistribution in healthy rats (HRT), however in AFRT, seven fold uptakes was observed in infected muscle as compared to inflamed and normal muscles. Based on the high RCP, stability in serum, better in vitro binding with bacteria, biodistribution behavior and the target to non-target (infected to inflamed muscle) ratio, we recommend the 99mTcN–GXND complex for in vivo investigation of MDRSA and PRSC infection in human.  相似文献   

20.
A novel electrochemical process to avail clinical grade 99mTc from (n,γ)99Mo has been demonstrated. The electrochemical parameters were optimized to maximize the 99mTc yield with minimal 99Mo contamination. 99Mo/99mTc generators containing up to 29.6 GBq (800 mCi) 99Mo were developed and their performance were extensively evaluated for 10 days without changing the operating conditions. Very high radioactive concentration of 99mTcO4 of acceptable quality, commensurate with hospital radiopharmacy requirements could be availed from the system with >90% yield. The compatibility of the product for the formulation of 99mTc labeled radiopharmaceuticals such as 99mTc-DMSA and 99mTc-EC was found to be satisfactory in terms of high labeling yields. The proposed route represents an important step for enhancing the scope of accessing clinical grade 99mTc from low specific activity (n, γ)99Mo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号