首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Ba1-xSrxTi1-yZryO3 (0≤x≤0.5, 0≤y≤0.4) and BA1?xZnxTi1?ySnyO3 (0≤x≤0.3, 0≤y≤0.3) solid solutions were synthesized by low-temperature/low-pressure hydrothermal method below 170°C, 0.8 MPa. XRD pattern and cell parameters-composition figures of these prepared powders demonstrated that they are completely miscible solid solutions based on BaTiO3. Furthermore, TEM showed that they have a shape of uniform, substantially spherical particles with an average particle size of 70 nm in diameter. The sintered ceramics of those powders doped by Sr2+ and Zr4+ or Zn2+ and Sn4+ have dielectric constant twelve times higher than and dielectric loss 1/6 those of pure BaTiO3 phase at room temperature.  相似文献   

2.
The phase relations in the system In2O3–TiO2–MgO at 1100 and 1350°C are determined by a classical quenching method. In this system, there are four pseudobinary compounds, In2TiO5, MgTi2O5 (pseudobrookite type), MgTiO3 (ilmenite type), and Mg2TiO4 (spinel type) at 1100°C. At 1350°C, in addition to these compounds there exist a spinel-type solid solution Mg2−xIn2xTi1−xO4 (0≤x≤1) and a compound In6Ti6MgO22 with lattice constants a=5.9236(7) Å, b=3.3862(4) Å, c=6.3609(7) Å, β=108.15(1)°, and q=0.369, which is isostructural with the monoclinic In3Ti2FeO10 in the system In2O3–TiO2–MgO. The relation between the lattice constants of the spinel phase and the composition nearly satisfies Vegard's law. In6Ti6MgO22 extends a solid solution range to In20Ti17Mg3O67 with lattice constants of a=5.9230(5) Å, b=3.3823(3) Å, c=6.3698(6) Å, β=108.10(5)°, and q=0.360. The distributions of constituent cations in the solid solutions are discussed in terms of their ionic radius and site preference effect.  相似文献   

3.
Based on the EHMO approach, the energy band structures for superconductors YBa2Cu3–x Sn x O y (y>7) and YBa2Cu3–x Ni x Oy (y<7) were calulated in the present paper. The influence of the cation doping at the Cu site in the unit cell and the oxygen content on their electronic structures was studied. The results showed that the cation doping at the Cu site resulted in the great decreases in the bandwidths of the broad anisotropic Cu-O bands and the densities of states. In YBa2Cu3–x Sn x O y , however, these decreases are compensated by the increase in the oxygen content caused by the Sn-doping, which results in a small change in the total densities of states. For YBa2Cu3–x Ni x O y , the effect of the doping on its electronic structures in dominant. The Ni-doping, therefore, results in a great change in the electronic structures. In addition, the study on the projected densities of states of the Ni-doped system revealed that the 2D Cu-O planes in the Y-Ba-Cu-O system played a dominant role in superconductivity.  相似文献   

4.
Summary By use of an approximate band-structure treatment based on the EHMO approach, the energy band structures for the Zn-doped superconductor YBa2Cu3–x Zn x O y were calculated in the present paper and the influence of partial substitution of zinc for copper on the electronic structures for orthorhombic YBa2Cu3Oy was studied. From analysis of the band structures and the densities of states for YBa2Cu3–x Zn x O y , it was demonstrated that the 2D Cu-O planes in the Y-Ba-Cu-O superconducting system have a direct and dominant influence on superconductivity, whereas the role of the 1D Cu-O ribbons and the O(4) atoms is also of some importance.  相似文献   

5.
Pb x ZryTi1−yO3 thin films were prepared by a modified Sol–gel method using alkoxides precursor compounds and spin-coating onto RuO2 coated stainless steel substrates. Depending on the zirconate/titanate ratio, both, ferroelectric and antiferroelectric behaviour has been obtained. Oxidation of the metal substrate due to the PZT crystallization process was studied in order to verify the influence of the heat treatment on the substrate morphology. In order to improve the properties of antiferroelectric Pb x Zr0.95Ti0.05O3, the influence of the lead excess in the composition was investigated. Thefs dependence of the switching field distribution from the annealing time and temperature, as well as the fatigue behaviour of the films, is discussed.  相似文献   

6.
LiFe0.5Ti1.5O4 was synthesized by solid-state reaction carried out at 900 °C in flowing argon atmosphere, followed by rapid quenching of the reaction product to room temperature. The compound has been characterized by X-ray powder diffraction (XRD) and 57Fe Mössbauer effect spectroscopy (MES). It crystallizes in the space group P4332, a = 8.4048(1) Å. Results from Rietveld structural refinement indicated 1:3 cation ordering on the octahedral sites: Li occupies the octahedral (4b) sites, Ti occupies the octahedral (12d) sites, while the tetrahedral (8c) sites have mixed (Fe/Li) occupancy. A small, about 5%, inversion of Fe on the (4b) sites has been detected. The MES data is consistent with cation distribution and oxidation state of Fe, determined from the structural data.The title compound is thermally unstable in air atmosphere. At 800 °C it transforms to a mixture of two Fe3+ containing phases – a face centred cubic spinel Li(1+y)/2Fe(5−3y)/2TiyO4 and a Li(z−1)/2Fe(7−3z)/2TizO5 – pseudobrookite. The major product of thermal treatment at 1000 °C is a ramsdellite type lithium titanium iron(III) oxide, accompanied by traces of rutile and pseudobrookite.  相似文献   

7.
ABO3 amorphous materials, such as BaTiO3 (BT), SrTiO3 (ST), PbTiO3 (PT), and BaxSr1−xTiO3 (BST) have recently attracted a good deal of attention due to their ferroelectric and electro-optical properties. Intense photoluminescence at room temperature was observed in amorphous titanate doped with chromium (BaxSr1−xTi1−yCryO3) prepared by the polymeric precursor method. Results indicated that substantial luminescence at room temperature was achieved with the addition of small Cr contents to amorphous BaxSr1−xTi1−yCryO3. Further addition of Cr or crystallization were deleterious to the intensity of the luminescent peak obtained for excitation using λ=488.0 nm.  相似文献   

8.
We have been exploring the utilization of supported ceria and ceria–zirconia nano-oxides for different catalytic applications. In this comprehensive investigation, a series of Ce x Zr1−x O2/Al2O3, Ce x Zr1−x O2/SiO2 and Ce x Zr1−x O2/TiO2 composite oxide catalysts were synthesized and subjected to thermal treatments from 773 to 1073 K to examine the influence of support on thermal stability, textural properties and catalytic activity of the ceria–zirconia solid solutions. The physicochemical characterization studies were performed using X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HREM), thermogravimetry and BET surface area methods. To evaluate the catalytic properties, oxygen storage/release capacity (OSC) and CO oxidation activity measurements were carried out. The XRD analyses revealed the formation of Ce0.75Zr0.25O2, Ce0.6Zr0.4O2, Ce0.16Zr0.84O2 and Ce0.5Zr0.5O2 phases depending on the nature of support and calcination temperature employed. Raman spectroscopy measurements in corroboration with XRD results suggested enrichment of zirconium in the Ce x Zr1−x O2 solid solutions with increasing calcination temperature thereby resulting in the formation of oxygen vacancies, lattice defects and oxygen ion displacement from the ideal cubic lattice positions. The HREM results indicated a well-dispersed cubic Ce x Zr1−x O2 phase of the size around 5 nm over all supports at 773 K and there was no appreciable increase in the size after treatment at 1073 K. The XPS studies revealed the presence of cerium in both Ce4+ and Ce3+ oxidation states in different proportions depending on the nature of support and the treatment temperature applied. All characterization techniques indicated absence of pure ZrO2 and crystalline inactive phases between Ce–Al, Ce–Si and Ce–Ti oxides. Among the three supports employed, silica was found to stabilize more effectively the nanosized Ce x Zr1−x O2 oxides by retarding the sintering phenomenon during high temperature treatments, followed by alumina and titania. Interestingly, the alumina supported samples exhibited highest OSC and CO oxidation activity followed by titania and silica. Details of these findings are consolidated in this review.  相似文献   

9.
Unsaturated heteropolyanions (HPA) [PW11O39]7− stabilize TiIV hydroxo complexes in aqueous solutions (Ti: PW11 [PW11O39]7−⪯12, pH 1–3). Spectral studies (optical,17O and31P NMR, and IR spectra) and studies by the differential dissolution method demonstrated that TiIV hydroxo complexes are stabilized through interactions of polynuclear TiIV hydroxo cations with heteropolyanions [PW11TiO40 5− formed. Depending on the reaction conditions, hydroxo cations Ti n−1O x H y m+ either add to oxygen atoms of the W−O−Ti bridges of the heteropolyanions to form the complex [PW11TiO40·Ti n−1O x H y ] k− (at [HPA]=0.01 mol L−1) or interact with TiIV of the heteropolyanions through the terminal o atom to give the polynuclear complexes [PW11O39Ti−O−Ti n−1O x H y ]q− (at [HPA]=0.2 mol L−1). When the complexes of the first type were treated with H2O2, TiIV ions added peroxo groups. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 914–920, May, 1997.  相似文献   

10.
Various compositions (1−x)BaTiO3 + xPbF2 + xLiF were prepared, shaped to pellets then sintered at 900°C for 2 h in gold sealed tubes. The purity and the symmetry of the obtained samples were checked by X-ray diffraction. A new solid solution with Ba1−x Pb x (Ti1−x Li x ) O3−3x F3x formula occurs in the composition range 0 ≤ x ≤ 0.20. SEM observations were performed on polished and fractured ceramics. The complex permittivity was measured as a function of temperature (−120°C ≤ T ≤ 250°C) and frequency (50 Hz ≤ f ≤ 4 × 107 Hz). The dielectric performances are the best for ceramic Ba0.97Pb0.03(Ti0.97Li0.03)O2.91F0.09. The real component ε′, exhibits a maximum of approximately 7500 at the ferroelectric Curie temperature T C ≈ -18°C, the dielectric losses tan δ value being 0.012. At room temperature, the relaxation frequency f r is around 40 MHz for this ceramic. This novel ferroelectric oxifluoride is a promising material for applications, in particular in the field of Z5U multilayer capacitors.   相似文献   

11.
Doped ceria electrolytes of Ce1-aGda-ySmyO2–0.5a, wherein a=0.15 or 0.2, and 0ya, were prepared with the citrate method, and characterized by inductively coupled plasma–atomic emission spectrometry, energy dispersive spectrometry, scanning electron microscopy, powder X-ray diffraction, and AC impedance spectroscopy. The effect of composition on the structure and conductivity was studied. All the samples were fluorite-type ceria-based solid solutions. For the singly doped samples, the optimal composition was Ce0.85Gd0.15O1.925 for Gd3+-doped ceria (CGO), which showed higher ionic conductivity than the best Sm3+-doped ceria (CSO) at 773–973 K. For the co-doped samples, the ionic conductivities were higher than those of the singly doped ones in the temperature range 673–973 K when a=0.15, but only better in 673–773 K when a=0.2. For the samples of Ce0.85Gd0.15-ySmyO1.925, wherein 0.05y0.1, much higher ionic conductivity was observed than those of the singly doped ceria at 773K~973 K. Therefore, these co-doped samples would be better than CGO and CSO to be the electrolytes of intermediate-temperature solid oxide fuel cells.  相似文献   

12.
Employing materials with fast transport of fluoride ions in chemical power sources and gas sensors requires synthesizing new materials with a wide range of electric properties. High conductivity of -PbF2can be provided by introducing trivalent ions, which create excess concentration of fluoride ions in -PbF2. Experimental data on the ionic conductivity of Pb1 – x M x F2 + x , where M is In, Sb, or Bi, are presented in [1–3]. For the first time brief information about high ionic conductivity of doped Pb1 – x Al x F2 + x– 2y O y was reported in [4]. Here, we study in greater detail ionic conduction of neat Pb1 – x Al x F2 + x– 2y O y and that doped with fluorides of transition metals Zn, Cu, Ni, Co, Mn, Cr, V, or Ti in the temperature range 272–473 K.  相似文献   

13.
洪薪超  孙晶  周晨  唐娟  毕冠 《无机化学学报》2019,35(6):1059-1064
以Ga_2O_3、Y_2O_3、Cr(NO_3)_3·9H_2O为原料,柠檬酸为配位剂,通过溶胶-凝胶高温固相合成法制备出Ga_(2-2x)O_3∶2xCr~(3+)(Ga_2O_3∶xCr)与Y_3Ga_(5-5x)O_(12)∶5xCr~(3+)(YGG∶xCr)2种多晶粉体(x=0.01,0.03,0.05,0.07)。并采用X射线衍射(XRD)、红外光谱(IR)、扫描电镜(SEM)、荧光光谱(PL)对样品的结构、组成、形貌和荧光性能进行测试分析。XRD和IR分析结果显示在900℃煅烧后Ga_2O_3∶xCr和YGG∶xCr两种样品均成相。SEM照片显示Ga_2O_3∶xCr样品形貌为柱形多面体,YGG∶xCr为短棒状。PL结果显示Cr~(3+)在Ga_2O_3和YGG两种基质中的最强荧光发射峰分别位于742和740 nm,均属于Cr~(3+)的~2E-~4A_2跃迁,对比发现Cr~(3+)在YGG基质中的荧光发射强度更强,在远红光区的荧光性能更好,能满足温室照明中植物光合作用的需求。  相似文献   

14.
Chemical routes to synthesize inorganics can start with solutions where multiple elements remain well mixed during liquid evaporation, precursor decomposition and crystallization. Because crystallization generally occurs at temperatures where diffusion is very limited, a single phase can crystallize with a greatly extended solid-solution that does not achieve its equilibrium phase assemblage until much higher temperatures where diffusion is no longer constrained. Partitioning at these higher temperatures can lead to unique microstructures such as the nano-composite illustrated here for a metastable Zr(1–x)Al x O2–x/2 (x0.57) phase that partitions into a composite containing t-ZrO2 grains and -Al2O3 plates.  相似文献   

15.
Sol-Gel Synthesis of Nanocrystalline PZT Using a Novel System   总被引:2,自引:0,他引:2  
A simple system has been developed for the preparation of lead zirconate titanate, Pb(Zr x Ti1 – x )O3 powders by sol-gel process. To achieve stable and homogeneous precursor solutions, chelating ligands such as acetic acid and acetylacetone have been used for the chemical modification of titanium and zirconium starting precursors. Phase-pure PZT powders were obtained, through a pyrochlore-free pathway, from the amorphous xerogel after heat treatment at 600°C. The formation of the crystalline phase, compositional homogeneity, sinterability, dielectric and piezoelectric characteristics of PZT are reported.  相似文献   

16.
Photocatalytically active Pb-doped TiO2 thin films were prepared on a soda-lime glass substrate by sol-gel dip-coating technique using TiO2 sols containing lead(II) nitrate. The thin films were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), UV-VIS spectroscopy and X-ray diffraction (XRD). A shift of the UV-VIS absorption towards longer wavelengths was observed, which indicated a decrease in the band-gap of TiO2 upon Pb doping. XRD results showed both pure and Pb-doped TiO2 thin films were polycrystalline, anatase type, and oriented predominantly to the (101) plane. A slight shift in the d-spacing for the Pb-doped film indicated the incorporation of Pb into the TiO2 lattice to form Pb x Ti1–x O2 solid solution. AFM results showed Pb-doped TiO2 thin films were composed of larger TiO2 particles and had rougher surface, compared with un-doped TiO2 thin films. XPS results showed that except for the enrichment of Pb near the surface, Pb exists in the forms of Pb x Ti1–x O2 and PbO. Dimethyl-2,2-dichlorovinyl phosphate (DDVP) was efficiently degraded in the presence of the Pb-doped TiO2 thin films by exposing the insecticide solution to sunlight. The mechanism of photocatalytic activity enhancement of the Pb-doped TiO2 thin films was discussed.  相似文献   

17.
TlFe3Te3 is hexagonal, space groupP63/m–C 2h 6 ,a=9.350(2) Å,c=4.2230 (7) Å,Z=2. Iron and tellurium atoms occupy the positions 6 (h) withx=0.170,y=0.149 andx=0.046,y=0.357 respectively. Thallium atoms are situated in 2 (d). The structure was determined on the basis of single crystal data obtained form a four circle diffractometer. Refinement yielded andR-value of 4.8% for an asymmetric set of 267 reflections. TlFe3Te3 is a new structure type. The structure and its relations to the Mn5Si3–, the Nb3Te4-and the Tl x V6S8-type are discussed.
  相似文献   

18.
Ba(Zr,Ti)O3/LaNiO3 layered thin films have been synthesized by chemical solution deposition (CSD) using metal-organic precursor solutions. Ba(Zr,Ti)O3 thin films with smooth surface morphology and excellent dielectric properties were prepared on Pt/TiO x /SiO2/Si substrates by controlling the Zr/Ti ratios in Ba(Zr,Ti)O3. Chemically derived LaNiO3 thin films crystallized into the perovskite single phase and their conductivity was sufficiently high as a thin-film electrode. Ba(Zr,Ti)O3/LaNiO3 layered thin films of single phase perovskite were fabricated on SiO2/Si and fused silica substrates. The dielectric constant of a Ba(Zr0.2Ti0.8)O3 thin film prepared at 700°C on a LaNiO3/fused silica substrate was found to be approximately 830 with a dielectric loss of 5% at 1 kHz and room temperature. Although the Ba(Zr0.2Ti0.8)O3 thin film on the LaNiO3/fused silica substrate showed a smaller dielectric constant than the Ba(Zr0.2Ti0.8)O3 thin film on Pt/TiO x /SiO2/Si, small temperature dependence of dielectric constant was achieved over a wide temperature range. Furthermore, the fabrication of the Ba(Zr,Ti)O3/LaNiO3 films in alternate thin layers similar to a multilayer capacitor structure was performed by the same solution deposition process.  相似文献   

19.
The formation of perovskite nanopowders of the common proton-conducting, electrolyte material Ba(Zr1−xYx)O3−δ is demonstrated by room temperature mechanosynthesis for the compositional range x=0, 0.058 and 0.148. This is achieved with a planetary ball mill at 650 rpm in zirconia vials, starting from BaO2 with ZrO2, (ZrO2)0.97(Y2O3)0.03 or (ZrO2)0.92(Y2O3)0.08 precursors, respectively. Powder X-ray diffraction (XRD) reveals the formation of the perovskite phase in the early stages of milling with phase purity being achieved after milling times of 240 min for composition x=0.058 whereas 420 min is necessary for composition x=0.148. In contrast, traces of ZrO2 are apparent in composition x=0 even after milling times of 420 min. The use of BaCO3 as precursor does not allow the formation of the perovskite phase for any composition. The perovskite crystallites are spherical in shape with an average size determined from XRD of ca. 30 nm in agreement with transmission electron microscopy observations. FTIR spectra demonstrate that contamination levels of BaCO3 in the mechanosynthesized powders are very low. The spherical shape and nanoscale of the crystallites allow densification levels that are highly competitive when compared to BaZrO3-based materials formed by alternative synthesis techniques documented in the literature.  相似文献   

20.
A novel organic gel film modified electrode was simply and conveniently fabricated by casting LixMoOy and polypropylene carbonate (PPC) onto the surface of a gold electrode. The cyclic voltammetry and amperometry studies demonstrated that the LixMoOy film modified electrode has a high stability and a good electrocatalytic activity for the reduction of iodate. In amperometry, a good linear relationship between the steady current and the concentration of iodate was obtained in the range from 3×10–7 to 1×10–4 mol L–1 with a correlation coefficient of 0.9997 and a detection limit of 1×10–7 mol L–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号