首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
We present and discuss power loss measurements performed in Fe–(3.5 wt%)Si nonoriented laminations up to very high flux densities. The results are obtained on disk samples using a 1D/2D single-sheet tester, where the fieldmetric and the thermometric methods are applied upon overlapping polarization ranges. The power loss in the highest polarization regimes (e.g. Jp>1.8 T) is measured, in particular, by the rate of rise of temperature method, both under controlled and uncontrolled flux density waveform, the latter case emulating the conditions met in practical unsophisticated experiments. Lack of control at such extreme Jp levels is conducive to strong flux distortion, but the correspondingly measured loss figure can eventually be converted to the one pertaining to sinusoidal induction at the same Jp values. This is demonstrated as a specific application of the statistical theory of magnetic losses, where the usual formulation for the energy losses in magnetic sheets under distorted induction is exploited in reverse fashion.  相似文献   

2.
The magnetic and structural properties of Fe ion-implanted GaN was investigated by various measurements. XRD results did not show any peaks associated with second phase formation. The magnetization curve at 5 K showed ferromagnetic behavior for 900 °C-annealed sample. In zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements, the irreversibility and a cusp-like behavior of the ZFC curve were observed for 900 °C-annealed sample. These behaviors are typically observed in superparamagnetic or spin glass phase. While the temperature dependence magnetization of 800 °C-annealed sample showed non-Brillouin-like curve and it is not exhibited ferromagnetic hysteresis at 5 K. In XPS measurement, the coexistence of metallic Fe (Fe0) and Fe–N bond (Fe2+ and Fe3+) for Fe 2p core level spectra is observed in as-implanted sample. But 700–900 °C-annealed samples showed only Fe–N bond (Fe2+ and Fe3+) spectra. For Ga 3d core level spectra only Ga–N bonds showed for as implanted with 700–900 °C-annealed samples. From XPS results, it could be explained that magnetic property of our films originated from FeN structures.  相似文献   

3.
(Ni0.25Cu0.20Zn0.55)LaxFe2−xO4 ferrite with x=0.00, 0.025, 0.050 and 0.075 compositions were synthesized through nitrate–citrate auto-combustion method. Crystalline spinel ferrite phase with about 16–19 nm crystallite size was present in the as-burnt ferrite powder. These powders were calcined, compacted and sintered at 950 °C for 4 h. Initial permeability, magnetic loss and AC resistivity of different compositions were measured in the frequency range from 10 Hz to 10 MHz. Saturation magnetization and hysteresis parameters were measured at room temperature with a maximum magnetic field of 10 kOe. Permeability and AC resistivity were found to increase and magnetic loss decreased with La substitution for Fe, up to x=0.025. Saturation magnetization and coercive field also increases up to that limit. The electromagnetic properties were found best in the ferrite composition of x=0.025, which would be better for more miniaturized multi layer chip inductor.  相似文献   

4.
We report a comparison of rotational energy loss measurements in the same non-oriented Fe–Si laminations carried out by two laboratories Istituto Nazionale di Ricerca Metrologica (INRiM) in Torino, Italy and Wolfson Centre for Magnetics (WCM) in Cardiff, United Kingdom. The measurements were performed on disk samples at magnetizing frequencies between 5 and 200 Hz with controlled circular flux density loci ranging between 0.2 and 1.9 T. Energy loss was measured applying both the fieldmetric and the rate-of-rise of temperature methods. The latter, exploiting the rate of rise of temperature under quasi-adiabatic conditions, is conveniently adopted on approaching magnetic saturation. Results from the two laboratories agree well up to 1.4 T, despite the different physical principles of the fieldmetric vs. rate-of-rise of temperature methods and the different size of sample and measuring areas. The rate-of-rise of temperature method seems to be the natural approach at high induction values.  相似文献   

5.
(Fe,Co)–Zr,Hf)–Cu–B (HITPERM-type) alloys with variable Hf, Zr and Co content were isothermally crystallised at 500–650 °C for 1 h, and the optimum nanocrystallisation temperature was selected on the basis of the minimum coercive field at room temperature. The quasistatic hysteresis loops were measured at temperature from 20 to 650 °C. Subsequently, the optimally annealed alloys were subjected to long-term annealing at 500, 550 and 600 °C. Working temperature of 600°C is too high for the investigated alloys to maintain stable magnetic properties. Temperature of 550 or 500 °C permits the material to be magnetically stable for a long period. The magnetic hysteresis loops recorded for the nanocrystalline alloys, where Fe:Co ratio is close to 1 and refractory metals content is 7 at.%, prove that coercive field increases slightly with temperature, but remains in the range of 20–40 A/m (depending on the alloy composition) from 20 to 550 °C. This proves that the investigated alloys, after optimisation of chemical composition, may be suitable for high temperature use.  相似文献   

6.
Precipitates heavily influence the magnetic properties of electrical steels, either as a key controlled requirement as part of the manufacturing process or as an unwanted harmful residual in the final product. In this current work copper-manganese sulphides precipitates are the primary inhibitor species in the conventional grain-oriented (CGO) steels examined and grain boundary pinning is effective at a mean precipitate size of 30–70 nm. The growth of CuMnS has been studied and the results show that a precipitate size above ∼100 nm allows the onset of secondary recrystallisation in the heating conditions applied.  相似文献   

7.
Magnetic materials play a key-role in magnetic induction hyperthermia for the treatment of cancer. In this paper, we analyse the magnetic properties of ferrimagnetic glass-ceramics with the composition in the system SiO2–Na2O–CaO–P2O5–FeO–Fe2O3, as a function of the melting temperature. These materials were obtained by melting of commercial reagents in the temperature range of 1400–1550 °C. Room-temperature magnetic measurements were performed by means of a vibrating sample magnetometer at room temperature. The power loss was determined from calorimetric measurements, using a magnetic induction furnace. The highest power loss (61 W/g) has been obtained for samples melted at 1500 °C. The heat generation of the ferrimagnetic glass-ceramics prepared by two different synthesis methods (traditional melting and coprecipitation-derived) will be compared. These materials are expected to be useful in the localised treatment of cancer.  相似文献   

8.
Magnetization curves of untreated and laser scribed GO FeSi steels were measured for 19 different frequencies from 0.05 to 500 Hz and for four polarizations from 1.4 to 1.7 T. From hysteresis loops, hysteresis losses were separated and frequency-dependent anomaly factors were calculated. Frequency-dependent anomaly factors for all measured polarizations can be very well described by an empirical equation. This behavior can be explained by the fact that an increase in polarization at a fixed magnetizing frequency corresponds to an increase of magnetizing frequency at a fixed polarization. Both an increase in frequency and an increase in polarization activate a higher number of domain walls in the magnetization process. The power losses can be described only by the frequency dependence of the anomaly factor and by the additional knowledge of hysteresis loss.  相似文献   

9.
Effect of annealing on the soft magnetic properties of Fe73.5Si13.5B9Nb3Au1 amorphous ribbon has been investigated by means of structure examination, magnetoimpedance ratio (MIR) and incremental permeability ratio (PR) spectra measured in the frequency range of 1–10 MHz at a fixed current of 10 mA X-ray diffraction analysis showed that the as-cast sample was amorphous and it became nanocrystalline under a proper heat treatment. When annealing amorphous alloy at 530 °C for 30, 60, 90 min, soft magnetic properties have been improved drastically. Among the samples investigated, the sample annealed at 530 °C for 90 min showed the softest magnetic behavior. The MIR and PR curves revealed the desirable changes in anisotropy field depending upon annealing.  相似文献   

10.
In the present study, the magnetic properties and microstructures of newly developed Fe–Cu–Si–B alloys prepared by annealing the melt-spun ribbon have been studied. The average size and number density of nanocrystalline grains were about 20 nm and 1023–1024 m−3, respectively. The saturation magnetic flux density Bs for the present alloy is more than 1.8 T, that is about 10% larger than that of Fe-based amorphous alloys. Moreover, core loss P of the present alloy is about half of that of Si-steel up to B=1.7 T.  相似文献   

11.
(Fe48Pt52)100−x–(MgO)x films were used to examine the performance of a perpendicular percolated medium. Two underlayers, Pt(0 0 1)/Cr(0 0 2) and MgO(0 0 2), were used for comparison. The (Fe48Pt52)100−x–(MgO)x film with the MgO underlayer exhibits a strong preference to segregate at FePt grain boundaries. The microstructure with small closely packed MgO particles (2–4 nm) dispersed uniformly in the L10 FePt matrix was achieved in the Pt/Cr underlayered sample. Structural data reveal that the precipitate is crystallographically coherent with the surrounding L10 FePt phase and preserves good lattice alignment. Magnetic results indicate significant pinning behavior for those introduced non-magnetic columns with an enhanced coercivity of about 70%—much greater than that of the MgO underlayered samples. Percolated perpendicular medium can be realized in the FePt system and a Pt(0 0 1)/Cr(0 0 2) underlayer promotes the formation of pinning sites within the FePt grains.  相似文献   

12.
Nanoparticles of Co1−xZnxFe2O4 with stoichiometric proportion (x) varying from 0.0 to 0.6 were prepared by the chemical co-precipitation method. The samples were sintered at 600 °C for 2 h and were characterized by X-ray diffraction (XRD), low field AC magnetic susceptibility, DC electrical resistivity and dielectric constant measurements. From the analysis of XRD patterns, the nanocrystalline ferrite had been obtained at pH=12.5–13 and reaction time of 45 min. The particle size was calculated from the most intense peak (3 1 1) using the Scherrer formula. The size of precipitated particles lies within the range 12–16 nm, obtained at reaction temperature of 70 °C. The Curie temperature was obtained from AC magnetic susceptibility measurements in the range 77–850 K. It is observed that Curie temperature decreases with the increase of Zn concentration. DC electrical resistivity measurements were carried out by two-probe method from 370 to 580 K. Temperature-dependent DC electrical resistivity decreases with increase in temperature ensuring the semiconductor nature of the samples. DC electrical resistivity results are discussed in terms of polaron hopping model. Activation energy calculated from the DC electrical resistivity versus temperature for all the samples ranges from 0.658 to 0.849 eV. The drift mobility increases by increasing temperature due to decrease in DC electrical resisitivity. The dielectric constants are studied as a function of frequency in the range 100 Hz–1 MHz at room temperature. The dielectric constant decreases with increasing frequency for all the samples and follow the Maxwell–Wagner's interfacial polarization.  相似文献   

13.
Decarburization is a necessary part of the processing of electrical steels if their carbon content is above a certain level. The process is usually carried out in a wet hydrogen–nitrogen atmosphere. Having a high dew point has a negative influence on the power loss, though. This is due to oxidation of the steel, which hinders domain wall motion near the surface. In this study, an increase of the power loss was only observed at a fairly high dew point (>20 °C). It was also only at these high dew points where a subsurface oxide layer was observed. The surfaces of samples with and without this layer were etched in steps. The magnetic properties of the etched samples corresponded well with the expected behavior based on GDOES profiles of the samples.  相似文献   

14.
Amorphous Ge1−xCrx thin films are deposited on (1 0 0)Si by using a thermal evaporator. Amorphous phase is obtained when Cr concentration is lower than 30.7 at%. The electrical resistivities are 1.89×10−3–0.96×102 Ω cm at 300 K, and decrease with Cr concentration. The Ge1−xCrx thin films are p-type. The hole concentrations are 5×1016–7×1021 cm−3 at 300 K, and increase with Cr concentration. Magnetizations are 7.60–1.57 emu/cm3 at 5 K in the applied field of 2 T. The magnetizations decrease with Cr concentration and temperature. Magnetization characteristics show that the Ge1−xCrx thin films are paramagnetic.  相似文献   

15.
The effect of plastic deformation and subsequent annealing on the magnetic properties and microstructure of a grain-oriented (GO) electrical steel has been studied. True strain (ε) from 0.002 to 0.23 was applied by rolling in two directions, rolling (RD) and transverse (TD). The deterioration of power losses varies according to the direction of deformation. Annealing the strained material—at 800 °C/2 h—leads to a recrystallization and restored magnetic properties. The main components of annealed-textures are around 15–35° from those of deformed-textures for both RD and TD. Rolling along {1 1 0} 〈0 0 1〉 direction leads to the development of deformation twins.  相似文献   

16.
The L10 ordered FePt films have been prepared at 300 °C with a basic structure of CrRu/MgO/FePt, followed by a post-annealing process at temperatures from 200 to 350 °C. The magnetic properties and the microstructure of the films were investigated. It is found that coercivity of FePt films increases greatly from 3.57 to 9.1 kOe with the increasing annealing temperature from 200 to 350 °C. The loop slope of the M–H curves decreases with the increasing annealing temperature, which is due to the grain isolation induced by MgO underlayer diffusion during the annealing process. The underlayer diffusion could be a useful approach to prepare the FePt-based composite films for high-density recording media.  相似文献   

17.
In this work, exchange bias and coercivity enhancement in ferromagnet (FM)–antiferromagnet (AFM) bilayer have been investigated. CoO film (50 nm) was deposited by sputtering with a relatively high oxygen partial pressure. The deposited films were subsequently annealed at varied temperature up to 973 K in the air atmosphere. The CoO film shows a disordered structure in the as-deposited state and an increase of crystallinity after annealing characterized by XRD and Raman spectra. A 40-nm Co film was deposited on the as-deposited CoO and annealed films. The Co–CoO bilayer shows a large exchange bias up to 1600 Oe and relatively high coercivity up to 3200 Oe (HC−) at 5 K, which is much larger than that of crystalline Co–CoO bilayer films without any treatment. The spin glass behavior combined with increasing crystallinity, surface roughness of CoO after annealing may be attributed to the large exchange bias and high coercivity.  相似文献   

18.
This paper presents measured multi-functional properties of Fe–Mn–Cr–Si–Tb–B ribbons developed by means of the melt-spinning technique in air. The alloys are multi-functional materials, which have both ferromagnetic and shape memory properties. If we can simultaneously improve the material properties, the applications of the shape memory alloys will be widened dramatically in the field of the electromagnetic sensors and actuators. The base shape memory material, Fe–Mn–Si alloy, is nonmagnetic due to its high manganese content (28–34 Mn, 4–6.5Si wt%). In order to improve ferromagnetic function of the Fe–Mn–Si alloy, we have investigated the addition of rare earth elements. Addition of about 0.7–1.0 wt% Tb was effective in increasing the saturation magnetization. However, ductility of the samples was not good and it was difficult to evaluate the shape memory properties with shape recovery strain measurements. The detailed magnetic and shape memory properties of the Fe–Mn–Cr–Si–Tb–B alloys are discussed in this paper.  相似文献   

19.
The paper describes a new generation of the high permeability fully processed silicon steel grades developed by Acesita, with core loss (W1.5/60) in range of 3.10–4.20 W/kg and polarisation (J50) from 1.71 to 1.75 T, respectively. The new grades have lower (Si+Al) content and a better crystallographic texture, with lower fractions of [1 1 1]||ND fibre and higher fractions of [0 0 1]||RD fibre. The new grades have better mechanical and magnetic properties than conventional grades.  相似文献   

20.
Magnetization of the ZnFe2O4 sample of average size 4 nm measured with SQUID in the temperature range 5–300 K shows anomalous behaviour in field cooled (FC) and zero-field-cooled (ZFC) conditions. The FC and ZFC curves measured in 50 Oe field cross each other a little before the peaks. No such anomaly is observed with samples of 6 nm particle size made with the same procedure. The characteristics of the FC and ZFC curves are very different in ZnFe2O4 samples of the same size (6 nm) made via two different chemical routes. The genesis of these differences are suggested to be in cationic configuration and spin disorder. Fe-extended X-ray absorption fine structure (EXAFS) studies show that there is around 80% inversion in case of zinc ferrite (ZnFe2O4) with the particle size 4 nm, whereas ZnFe2O4 of size 6 nm shows 40% inversion. The samples with an average particle size of 7 nm and more show negligible inversion. Theoretical simulations suggest that the electrostatic energy of the system plays a crucial role in deciding the cationic configuration of spinel ferrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号