共查询到20条相似文献,搜索用时 15 毫秒
1.
New squaraine-based chemosensors SQ1 and SQ2 functionalized with 2-picolyl units were first synthesized and used as highly selective and sensitive colorimetric and fluorometric dual-channel sensors for Cu2+-specific recognition in aqueous systems. Among a series of individual metal ions, only Cu2+ could result in dramatic color changes. We also evaluated their capability of biological applications and found that SQ2 could be successfully employed as a Cu2+-selective probe in the fluorescence imaging of living cells. 相似文献
2.
This review presents the state of the art of DNA sensors (or genosensors) that utilize electrochemical impedance spectroscopy as the transduction technique. As issue of current interest, it is centered on the use of nanomaterials to develop or to improve performance of these specific biosensors. It will describe the different principles that may be employed in the measuring step and the different formats adopted for detection of a DNA sequence or confirmation or amplification of the finally obtained signal. The use of nanomaterials for the above listed aspects, viz. the use of carbon nanotubes or other nanoscopic elements in the construction of the electrodes, or the use of nanoparticles, mainly gold or quantum dots, for signal enhancement will be fully revised. 相似文献
3.
Xiaoxu Teng Mingyu Tian Jinwen Zhang Lijun Tang Junna Xin 《Tetrahedron letters》2018,59(29):2804-2808
A new fluorescent probe (TCF-AC) that contains 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) skeleton has been developed. Probe TCF-AC exhibits highly selective and sensitive detection toward Pd0 in EtOH/H2O (1:1, v/v, PBS 20?mM, pH?=?7.4) solution with fluorescence “turn on” and colorimetric changes. The Pd0 detection by TCF-AC holds some advantages including good anti-interference ability, a relative large Stokes shift (>100?nm), and a low detection limit (7.05?×?10?7?M). Cell imaging studies demonstrate that TCF-AC is applicable to detect Pd0 in living HeLa cells. 相似文献
4.
A new rhodamine-based chemosensor was synthetized through a modified copper-catalyzed [3+2]-cycloaddition of an azidocoumarin with an alkynyl-rhodamine. Its sensing properties toward various metal cations in aqueous solutions were investigated by colorimetric changes, UV–vis and fluorescence spectroscopies. The sensor exhibited a high selectivity for Cr2+ over Cr3+ and other divalent cations such as Cu2+, Mg2+, Zn2+, Ca2+, Cd2+, Co2+, Hg2+ and Ni2+. The linear range of detection by fluorescence spectroscopy is 0.07–3.5 mM, with a detection limit of ca. 64 μM. The binding mode of Cr2+ with the sensor was rationalized through experimental evidences. 相似文献
5.
A colorimetric and fluorescent turn-on chemosensor for Zn based on an azobenzene-containing compound
Jing Wang 《Tetrahedron》2009,65(34):6959-14
This paper presents a new colorimetric reversible fluorescent turn-on chemosensor molecule for zinc ion based on an azobenzene derivative. The basal fluorescence intensity of the chemosensor molecule is little affected under physiological pH 5-9, whilst the excitation (507 nm) and emission (610 nm) wavelength of the molecular probe for zinc ion is in the visible range. 相似文献
6.
A novel, highly selective and sensitive paper-based colorimetric sensor for trace determination of copper (Cu2+) ions was developed. The measurement is based on the catalytic etching of silver nanoplates (AgNPls) by thiosulfate (S2O32−). Upon the addition of Cu2+ to the ammonium buffer at pH 11, the absorption peak intensity of AuNPls/S2O32− at 522 nm decreased and the pinkish violet AuNPls became clear in color as visible to the naked eye. This assay provides highly sensitive and selective detection of Cu2+ over other metal ions (K+, Cr3+, Cd2+, Zn2+, As3+, Mn2+, Co2+, Pb2+, Al3+, Ni2+, Fe3+, Mg2+, Hg2+ and Bi3+). A paper-based colorimetric sensor was then developed for the simple and rapid determination of Cu2+ using the catalytic etching of AgNPls. Under optimized conditions, the modified AgNPls coated at the test zone of the devices immediately changes in color in the presence of Cu2+. The limit of detection (LOD) was found to be 1.0 ng mL−1 by visual detection. For semi-quantitative measurement with image processing, the method detected Cu2+ in the range of 0.5–200 ng mL−1(R2 = 0.9974) with an LOD of 0.3 ng mL−1. The proposed method was successfully applied to detect Cu2+ in the wide range of real samples including water, food, and blood. The results were in good agreement according to a paired t-test with results from inductively coupled plasma-optical emission spectrometry (ICP-OES). 相似文献
7.
A simple cation sensor 1 ((E)-9-((2-hydroxynaphthalen-1-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol) bearing both a julolidine moiety and a naphthol moiety was designed and synthesized as a colorimetric sensor for Cu2+. In methanol solution of 1, the presence of Cu2+ led to a distinct naked-eye color change from yellow to purple. The proposed sensing mechanism might be attributed to the decrease in internal charge transfer band. Moreover, the resulting 1–Cu2+ complex sensed cyanide in a fluorometric way via fluorescent changes. These results demonstrate a novel type of the sequential recognition of Cu2+ and CN− using two different sensing methods, color change, and fluorescence. 相似文献
8.
Yefeng Wang Liang ZhangGuanjun Zhang Yue WuShengying Wu Jianjun YuLimin Wang 《Tetrahedron letters》2014
A perylene bisimide derivative (PBI) based colorimetric and fluorescent bifunctional probe PAM-PBI was designed and synthesized. It was highly selective and sensitive for distinguishing both Cu2+ and F− from other ions through a conspicuous change of UV–vis and fluorescence spectra. The recognition of Cu2+ by PAM-PBI showed an obvious color change from rose red to purple in aqueous solution, while the sensing of F− gave a marked color change from rose red to light green in THF. 相似文献
9.
Cheol Gyu Lee Seungyoon Kang Jinyoung Oh Min Sik Eom Jusung Oh Min-Gon Kim Woon Seob Lee Sukwon Hong Min Su Han 《Tetrahedron letters》2017,58(46):4340-4343
In this study, a colorimetric and fluorescent chemosensor for mercury ions (Hg2+) was developed. Cationic polydiacetylene (PDA) vesicles with a quaternary ammonium cation and iodide as a counterion show a blue-to-red color transition; the color change is accompanied by a fluorescence enhancement in selective response to Hg2+ ions because of a perturbation of the ene–yne conjugated backbone induced by counterion exchange. It allows for selective detection of Hg2+ with the naked eye and the sensor is used to determine Hg2+ concentrations in tap water samples. 相似文献
10.
11.
Two 4,5-disubstituted-1,8-naphthalimide derivatives 1 and 2 were synthesized as ratiometric fluorescent and colorimetric sensors for Cu2+, respectively. In 100% aqueous solutions of 1, the presence of Cu2+ induces a strong and increasing fluorescent emission centered at 478 nm at the expense of the fluorescent emission of 1 centered at 534 nm. Compound 2 senses Cu2+ by means of a colorimetric (primrose yellow to pink) method with a thorough quench in emission attributed to the deprotonation of the secondary amine conjugated to the naphthalimide fluorophore. 1-Cu2+ and 2-Cu2+ sense cyanide in ratiometric way via colorimetric and fluorescent changes. 相似文献
12.
Qi Wang Yan Feng Jun Jiang Wen-Juan Wang Jiu-You Chen Hong-Ting Sheng Xiang-Ming Meng Man-Zhou Zhu 《中国化学快报》2016,27(9):1563-1566
We develop a novel coumarin-alkyne derivative(NC7-AL), which can specifically react with Au~(3+) and give a colorimetric and fluorescent ‘‘turn-on' response toward Au~(3+). Notably, other alkynophilic metal species such as Au+, Ag+, Pd~(2+), Ni~(2+), Cu~(2+), and Hg~(2+) do not produce an interfering signal. A good linear relationship between emission intensity at 420 nm and Au~(3+) concentration from 0 to 2 equivalent is observed, and the detection limit(3s/k) is estimated to be ca. 3.58 nmol/L. Harnessing the Au~(3+)-induced color change from light yellow to colorless, we find that NC7-AL-based modified TLC plate can be used for convenient naked-eye detection of Au~(3+). 相似文献
13.
A. Yu. Mironenko M.V. Tutov A.K. Chepak P.A. Zadorozhny S. Yu. Bratskaya 《Tetrahedron》2019,75(11):1492-1496
In this work, we design and synthesize the novel probe RC through introduction the 1-aza-4,13-dithia-15-crown-5 ring into the structure of rhodamine 6G hydrazide, where the N atom of crown ring is responsible for quenching of rhodamine fluorescence. The compound obtained behaves as multifunctional cation sensor providing selective fluorescent response to Au3+ and selective colorimetric response to Cu2+ ions in aqueous acetonitrile (1/1, v/v) at pH 7.0. The use of 10?5?M RC solution allowed reliable determination of target cations in the presence of a wide range of environmentally relevant ions with detection limits of 2?×?10?6?M and 5?×?10?7?M for gold and copper, respectively. 相似文献
14.
《中国化学快报》2020,31(9):2428-2432
A colorimetric and fluorometric dual probe based on a water-soluble polythiophene derivative (PMTPBA) was designed and synthesized. It can be applied to determination of picric acid (PA) in 100% aqueous solution. The approach relies on the formation of supramolecular polythiophene assemblies in the presence of PA through electrostatic, charge transfer and π-π stacking interactions. This probe could be utilized for the rapid and visual detection of PA both in aqueous solution and solid support with high specificity and sensitivity. The detection limit of this sensor is as low as 5.0 × 10-8 mol/L. 相似文献
15.
A new highly sensitive colorimetric receptor 1 for fluoride based on anthracene-9,10-dicarbaldehyde bis-p-nitrophenylhydrazone was designed, synthesized and characterized. Experiments showed that the receptor 1 can selectively recognize the fluoride in DMSO and even in 95/5 DMSO/H2O (v/v) mixtures. The ability of recognition and the bond between receptor 1 and anions were determined using visual inspection, UV-vis and fluorescence analyses. In addition, 1H NMR experiments were carried out to explore the nature of interaction between receptor 1 and fluoride. Finally, analytical application and detection of fluoride in toothpaste have been studied. 相似文献
16.
Health or environmental issue caused by abnormal level of metal ions like Zn2+ or Cd2+ is a worldwide concern. Developing an inexpensive and facile detection method for Zn2+ and Cd2+ is in urgent demand. Due to their super optical properties, fluorescent quantum dots (QDs) have been developed as a promising alternative for organic dyes in fluorescence analysis. In this study, a CdTe QDs-based sensitive and selective probe for Zn2+ and Cd2+ in aqueous media was reported. The proposed probe worked in fluorescence “turn-on” mode. The initial bright fluorescence of CdTe QDs was effectively quenched by sulfur anions (S2−). The presence of Zn2+ (or Cd2+) can “turn-on” the weak fluorescence of QDs quenched by S2− due to the formation of ZnS (or CdS) passivation shell. Under optimal conditions, a good linear relationship between the fluorescence response and concentration of Zn2+ (or Cd2+) could be obtained in the range from 1.6 to 35 μM (1.3–25 μM for Cd2+). The limit of detection (LOD) for Zn2+ and Cd2+ were found to be 1.2 and 0.5 μM, respectively. Furthermore, the present probe exhibited a high selectivity for Zn2+ and Cd2+ over other metal ions and was successfully used in the detection of Zn2+ or Cd2+ in real water samples. 相似文献
17.
Zheng Qiao Yifan Wu Bencan Tang Rosa Perestrelo Rajiv Bhalla 《Tetrahedron letters》2019,60(32):150918
In this present study, a simple cation chemoprobe 1 bearing naphthol OH and imine group was designed and synthesized, which was identified as an aggregation induced emission (AIE) active molecule with excited state intramolecular proton transfer (ESIPT) features. In addition, 1 showed both colorimetric detection for Fe3+ and turn-on fluorescence response for Al3+. The binding ratio of 1 to Fe3+ and Al3+ were determined both to be 1:1 via Job’s plot and ESI-mass spectrometry analysis. The limit of detection (LOD) of probe 1 to Fe3+ and Al3+ were 0.10 and 0.43 μM, respectively. Moreover, probe 1 could be used to quantify Fe3+ and Al3+ in environmental water samples. 相似文献
18.
Shao J Yu M Lin H Lin H 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,70(5):1217-1221
A novel and simple fluorescent receptor bearing thiourea moiety as recognition site was described. The recognition behavior of the receptor toward different anions was investigated in DMSO/H(2)O (95:5 v/v) and dry DMSO through two various channels: the colorless-yellow color change and a remarkable enhancement of the fluorescence. And the enhancement of the fluorescence was attributed to an anion-induced increase of the rigidity of the host molecule. 相似文献
19.
Optical sensors are widely used in the field of analytical sensing and optical imaging because of their high sensitivity, fast response time, and technical simplicity. This review focuses on recent contributions concerning the ions, neutral molecules and especially tumor micro-environment-related parameters based fluorescent or colorimetric sensors and is organized according to their target classifications. 相似文献
20.
Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non-ratiometric QD-FRET transduction method. The selectivity of the hybridization assays was demonstrated by the detection of single nucleotide polymorphism. 相似文献