首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface and bulk magnetic structures of Sr-M-type single-crystal hexagonal ferrites (with the chemical formula SrFe12?x AlxO19) have been directly compared by simultaneous gamma, x-ray, and electron Mössbauer spectroscopy. It was found, that when the magnetic lattice of Sr-M hexagonal ferrites is slightly diluted by diamagnetic Al ions, namely, for x=1.8 (SrFe10.2Al1.8O19), a ~300-nm thick macroscopic anisotropic layer forms on the crystal surface, wherein iron-ion magnetic moments are oriented differently from those in the bulk of the sample. The reason for the onset of a noncollinear magnetic structure in the surface layer of SrFe10.2Al1.8O19 crystals is the additional lowering of the exchange interaction energy caused by the presence of such a “defect” as the surface. Thus an anisotropic surface layer predicted theoretically by L. Néel in 1954 has been detected in ferromagnetic crystals.  相似文献   

2.
《Current Applied Physics》2018,18(4):469-476
In order to obtain SrFe12O19 nanoparticles, thermal treatment method was employed, and afterwards SiO2 and TiO2 nanoparticles were embedded in SrFe12O19 matrix SrFe12O19 nanoparticles. The SiO2 and TiO2 nanoparticles' effects were set in SrFe12O19 matrix and experimental techniques which include, transmission electron microscopy (TEM), x-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), x-ray analysis (EDX) and field emission scanning electron microscope (FESEM) were used in studying the physical properties of the prepared nanoparticles. The precise DASF method (derivation of absorption spectrum fitting) was employed in examining the optical properties. The addition of SiO2 and TiO2 nanoparticles to SrFe12O19 matrix resulted in the reduction of energy band gap values in compare with the SrFe12O19 nanoparticles. The chemical analysis of SrFe12O19/SiO2, SrFe12O19 nanoparticles, and SrFe12O19/TiO2 nanocomposites was carried out using energy dispersion X-ray analysis (EDX). Ferromagnetic behaviors were demonstrated by SrFe12O19 nanoparticles, SrFe12O19/SiO2 and SrFe12O19/TiO2 nanocomposites, and the behaviors were validated through the use of a vibrating sample magnetometer (VSM). A wasp-waist was observed through hysteresis loop of SrFe12O19/SiO2 nanocomposites, implying the presence of the two magnetic phases; soft and hard ferromagnetic.  相似文献   

3.
The effect a pulsed magnetic field has on the crystal structure and macroscopic magnetic parameters of hexagonal ferrites BaFe12O19 and SrFe12O19 are studied. It is shown that changes in the physical properties of ferrites are due to the ordering of cation vacancies on the boundaries of hexagonal and spinel blocks that minimize local distortion of the oxygen polyhedrons. Violation of the collinear ordering of the magnetic moments of iron ions in the nonequivalent positions of SrFe12O19 ferrite is observed, due to the selective localization of such vacancies (and thus violations of the magnetic relationships in Fe–O–Fe).  相似文献   

4.
A new method of dispersing the aggregated strontium hexaferrite (SrFe12O19) magnetic nanoparticles in organic solvents such as propylene glycol monomethyl ether acetate (PGMEA), propylene glycol (PG), and glycerol, by an ultrasonic bath is reported herein. The particles size of SrFe12O19 after treatment with the PGMEA is in the range 70–100 nm. The structure of dispersed SrFe12O19 was characterized using transmission electron microscopy (TEM), high resolution scanning electron microscopy (HR SEM) and thermo gravimetric analysis (TGA). This dispersed material was used for the preparation of a topical magnetic cosmetic product as follows: The dispersion of SrFe12O19 in PG was mixed with “Dermud-Ahava Body Cream”, an ‘oil in water’ emulsion of a Dead Sea mineral cosmetic, “AHAVA”, and the magnetic properties of the created composite were determined. The ferrimagnetic behavior of the composite has been demonstrated as being very similar to the behavior of strontium hexaferrite itself.  相似文献   

5.
Strontium ferrite SrFe12O19 (SrM) thick films have been synthesized using a spinning coating sol–gel process. The coating sol was formed from SrFe12O19 powders dispersed in the strontium ferrite raw sol. XRD, TEM, SEM, vibrating sample magnetometer (VSM) and ac susceptometer were employed to evaluate the structure, composition and magnetic properties of SrFe12O19 thick films. The results indicated that a uniform and crack-free coating of Strontium ferrite with ∼15 μm thickness can be produced with a good deal of consistency. The magnetization hysteresis loops were almost the same for magnetic fields both applied in parallel and perpendicular.  相似文献   

6.
Nano size composite of x(NiFe2O4)+(1?x)(SrFe12O19) were prepared using sol gel and aerosol route. The percentage of the components of NiFe2O4 and SrFe12O19 calculated from X-ray diffraction pattern using Rietveld analysis. The hysteresis loop for the as obtained samples exhibits no hysteresis, which may be attributed to super paramagnetic relaxation. The saturation magnetization do not show a significant change with the increase of strontium ferrites, however, the coercivity increased from 115 to 6,000 Oe. The Mössbauer spectra of these nano composites were discussed along with the magnetic moment and X-ray results.  相似文献   

7.
Direct comparative studies are made between the magnetic structures of a surface layer of thickness ~40 nm and the bulk magnetic structure of ferromagnetic single crystals of hexagonal M ferrites (BaFe12O19, SrFe12O19, PbFe12O19) with a magneto-plumbite structure. Measurements are made by simultaneous gamma, x-ray, and electron Mössbauer spectroscopy in order to investigate the properties of the surface layer and the bulk crystal simultaneously. Experimental data obtained with a depth resolution of ~ 10 nm show that the orientation of the magnetic moments of the iron ions (along the crystallographic c axis) does not change on approaching the surface from the crystal volume. Thus, to within an experimental error of ~ 10 nm, single crystals of the hexagonal ferrites BaFe12O19, SrFe12O19, and PbFe12O19 with a ferromagnetic structure do not have a “ transition” surface layer whose magnetic structure differs from that of the bulk crystal such as that which exists, with a depth of several hundred nm, in antiferromagnetic materials with weak ferromagnetism.  相似文献   

8.
Strontium hexaferrite (SrFe12O19) nanoparticles were synthesized by the chemical coprecipitation method and using polyvinyl alcohol (PVA) as a protective agent. The synthesized samples were characterized by differential thermal analysis, X-ray diffraction, scanning and transmission electron microscopy, particle size analyzer, sedimentation test and vibrating sample magnetometer. In the presence of PVA, the single-phase SrFe12O19 nanoparticles were obtained at low temperature of 650 °C. The average particle size of SrFe12O19 precursor was 15 nm, which increased to 61 nm after calcination at 650 °C. The magnetic measurements indicated that PVA decreased coercivity from 4711 to 3216 Oe with particle size reduction. The results showed that PVA as a protective agent could be effective in decreasing the particle size, calcination temperature and coercivity of SrFe12O19 nanoparticles.  相似文献   

9.
We have used temperature- and frequency-resolved ac-susceptibility measurements to investigate the magnetic relaxation of a Co0.2Fe2.8O4 magnetic fluid above the freezing point of the liquid carrier. Our data show that both the Néel and the Brown relaxation mechanisms are operative at temperatures in the vicinity of the out-of-phase (imaginary) susceptibility peak. We separate the contributions of the two mechanisms to the overall relaxation time, and demonstrate that Brownian relaxation plays a dominant role at all temperatures within this high-dissipation regime.  相似文献   

10.
SrFe12O19–TiO2 nanocomposites are usually used for absorbing microwaves in military and civil applications. In this work, microwave absorption properties of porous SrFe12O19 nanocomposites with 50% weight ratio of TiO2 have been investigated. 50% TiO2–50% SrFe12O19 nanocomposites were prepared by a controlled hydrolysis of titanium tetraisopropoxide in which SrFe12O19 nanoparticles were synthesized by a sol–gel auto combustion route. The morphology, crystalline structure and crystallite size of SrFe12O19–TiO2 nanocomposites were characterized by field emission scanning electron microscopy and X-ray powder diffraction. The magnetic measurements were carried out with a vibrating sample magnetometer. The microwave absorption was measured by a Vector Network Analyzer. The microwave absorption results indicated that the reflection losses for specimens with 52%–56% porosity and thicknesses of 1.8, 2.1 and 2.6 mm were not very low but minimum reflection loss for a specimen with 4.2 mm thickness reached upto −33 dB.  相似文献   

11.
12.
The relaxation characteristics of magnetic nanoparticles (CoFe2O4) were investigated in J774A.1 macrophages and after voluntary inhalation. In dry form 25% of the particles showed Néel relaxation. Relaxation in macrophages occurred within minutes and could be inhibited by fixation, showing Brownian relaxation and intracellular transport processes. Relaxation in the lung happened similarly, but was dependent on the time after deposition. The particles were cleared from the lung within 2 weeks.  相似文献   

13.
Strontium hexaferrite (SrFe12O19) films have been fabricated by pulsed laser deposition on Si(1 0 0) substrate with Pt(1 1 1) underlayer through in situ and post annealing heat treatments. C-axis perpendicular oriented SrFe12O19 films have been confirmed by X-ray diffraction patterns for both of the in situ heated and post annealed films. The cluster-like single domain structures are recognized by magnetic force microscopy. Higher coercivity in perpendicular direction than that for the in-plane direction shows that the films have perpendicular magnetic anisotropy. High perpendicular coercivity, around 3.8 kOe, has been achieved after post annealing at 500 °C. Higher coercivity of the post annealed SrFe12O19 films was found to be related to nanosized grain of about 50–80 nm.  相似文献   

14.
The phase transformation of strontium hexagonal ferrite (SrFe12O19) to magnetite (Fe3O4) as main phase and strontium carbonate (SrCO3) as secondary phase is reported here. SrFe12O19 powder was obtained by a heat treatment at 250 °C under controlled oxygen flow. It was observed that the phase transformation occurred when the SrFe12O19 ferrite was heated up to 625 °C in confinement conditions. This transformation took place by a combination of three factors: the presence of stresses in the crystal lattice of SrFe12O19 due to a low synthesis temperature, the reduction of Fe3+ to Fe2+ during the heating up to 625 °C, and the similarity of the coordination spheres of the iron atoms present in the S-block of SrFe12O19 and Fe3O4. X-ray diffraction analysis confirmed the existence of strain and crystal deformation in SrFe12O19 and the absence of them in the material after the phase transformation. Dispersive X-ray absorption spectroscopy and Fe57 Mössbauer spectroscopy provided evidences of the reduction of Fe3+ to Fe2+ in the SrFe12O19 crystal.  相似文献   

15.
Using vibrating sample magnetometery (VSM) 50 MeV Li3+ ion irradiation effects on magnetic properties of single crystals of SrGaxInyFe12−(x+y)O19 (where x=0, 5, 7, 9; y=0, 0.8, 1.3, 1.0), are reported. The substitution of Ga and In in strontium hexaferrite crystals decreases the value of magnetization sharply, which is attributed to shifting of collinear magnetic order to a non-collinear one. Reduction of magnetization is also explained to be as a result of the occupation of the crystallographic sites of Fe3+ by Ga3+ and In3+. The Li3+ ion irradiation decreases the value of magnetization, irrespective of whether the crystals are Ga–In substituted or unsubstituted crystals of SrFe12O19. The result is interpreted in terms of the occurrence of a paramagnetic doublet in crystals replacing magnetic sextuplet as a result of irradiation. Substitution of Ga–In in Strontium hexaferrite decreases the value of anisotropy constant. Irradiation with Li3+ ions increases the values of anisotropy field for both substituted as well as unsubstituted crystals. Substitution with Ga–In also decreases the Curie temperature (Tc) but the irradiation with Li3+ ions does not affect the curie temperature of either Ga–In substituted or pure SrFe12O19 crystals.  相似文献   

16.
Magnetic nanocomposite SrFe12O19/Ni0.7Zn0.3Fe2O4 powders with different weight fractions of the Ni0.7Zn0.3Fe2O4 soft ferrite were synthesized by a combination of the sol–gel self-propagation and glyoxilate precursor methods. The results of magnetic measurements revealed the higher Mr/Ms ratio for the nanocomposites than that for the single phase SrFe12O19 which proves the existence of the intergrain exchange coupling between hard and soft magnetic phases with the exchange spring behavior. The highest Mr/Ms ratio of 0.63 was obtained in the composite consisting of 80 wt% of SrFe12O19 and 20 wt% Ni0.7Zn0.3Fe2O4. The microstructural studies of this sample exhibited the average dimensions of hard and soft phases about 20 nm and 15 nm, respectively which are small enough for strong exchange coupling according to the theoretical studies. The variations of the reduced remanence (Mr/Ms) with increasing the weight fraction of the soft phase could be also explained by the role of the exchange and dipolar interactions in tuning the magnetic properties of the nanocomposites.  相似文献   

17.
The magnetic structure of the surface layer of single crystals of hexagonal ferrites of the type Sr-M (SrFe12O19) in which some iron ions are replaced by diamagnetic Al ions is investigated, in direct comparison with the magnetic structure in the bulk of the sample, by the method of simultaneous gamma, x-ray, and electron Mössbauer spectroscopy. It is found that under conditions of diamagnetic dilution of the magnetic lattice of hexagonal ferrites of the type Sr-M by Al ions, a layer ~200 nm thick in which the orientation of the magnetic moments is not collinear with the direction of the moments in the bulk of the sample is observed on the surface of SrFe10.2Al1.8O19 crystals. Thus a “transitional” surface layer has been observed on macroscopic ferromagnetic crystals.  相似文献   

18.
A study is reported of the temperature dependences of the hyperfine (HF) interaction parameters in a ~200-nm thick surface layer and in the bulk of macroscopic hexagonal ferrite crystals of the Sr-M type (SrFe12O19 and SrFe10.2Al1.8O19). The method used for the measurements is Mössbauer spectroscopy with simultaneous detection of gamma quanta, characteristic x-ray emission, and electrons, which permits direct comparison of the HF parameters in the bulk and the near-surface layers of a sample. As follows from the experimentally determined temperature dependences of the effective magnetic fields, the fields at the nuclei of the iron ions located in a ~200-nm thick near-surface layer decrease with increasing temperature faster than those of the ions in the bulk. The transition to paramagnetic state in a ~200-nm thick surface layer was found to occur 3° below the bulk Curie temperature. This offers the first experimental evidence for the transition to paramagnetic state in a surface layer of macroscopic ferromagnets to take place below the Curie temperature T c for the bulk of the crystal. It has been established that the transition temperature T c (L) of a thin layer at a depth L from the surface of a crystal increases as one moves away from the surface to reach T c at the inner boundary of the surface layer called critical. In the vicinity of T c one observes a nonuniform state, with the crystal being magnetically ordered in the bulk but disordered on the surface. The experimental data obtained were used to construct a phase diagram of surface and bulk states for macroscopic magnets near the Curie (or Néel) temperature.  相似文献   

19.
M-type strontium hexaferrite (SrFe12O19) particles had been prepared by a modified chemical co-precipitation route. Structural and magnetic properties were systematically investigated. Rietveld refinement of X-ray powder diffraction results showed that the sample was single-phase with the space group of P63/mmc and cell parameter values of a=5.8751 Å and c=23.0395 Å. The results of field-emission scanning electronic microscopy showed that the grains were regular hexagonal platelets with sizes from 2 to 4 μm. The composition determined by energy dispersive spectroscopy is the stoichiometry of SrFe12O19. The ferrimagnetic to paramagnetic transition was sharp with Curie temperature TC=737 K, which further confirmed that the samples were single phase. However, it was found that the coercivity, saturation magnetization and the squareness ratio of the synthesized SrFe12O19 samples were lower than the theoretical values, which could be explained by the multi-domain structure and the increase of the demagnetizing factor.  相似文献   

20.
Strontium hexaferrite SrFe12O19 thin films have been synthesized at different pH, adjusted by NH4OH, on the Si (1 0 0) substrate using a spin coating sol-gel process. Fourier transform infrared spectroscopy analysis and theoretical calculations were conducted for determination and controlling metal citrates in solution precursors. X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer were applied to evaluate the composition, microstructure, crystallite size and magnetic properties of the SrFe12O19 thin films. Using the solution with pH 7, the approximately single phase strontium hexaferrite thin films with optimum physical properties can be obtained at calcination temperature of 800 °C. The SrFe12O19 thin films derived from the solution with pH 7 after calcination at 800 °C exhibited crystallite size of 42 nm and magnetic properties of Ms=267 emu/cm3 (at 10 kOe), Mr=134 emu/cm3 and Hc=4290 Oe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号