首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mononuclear amidinate complexes [(η6‐cymene)‐RuCl( 1a )] ( 2 ) and [(η6‐C6H6)RuCl( 1b )] ( 3 ), with the trimethylsilyl‐ethinylamidinate ligands [Me3SiC≡CC(N‐c‐C6H11)2] ( 1a ) and[Me3SiC≡CC(N‐i‐C3H7)2] ( 1b ) were synthesized in high yields by salt metathesis. In addition, the related phosphane complexes[(η5‐C5H5)Ru(PPh3)( 1b )] ( 4a ) [(η5‐C5Me5)Ru(PPh3)( 1b )] ( 4b ), and [(η6‐C6H6)Ru(PPh3)( 1b )](BF4) ( 5 ‐BF4) were prepared by ligand exchange reactions. Investigations on the removal of the trimethyl‐silyl group using [Bu4N]F resulted in the isolation of [(η6‐C6H6)Ru(PPh3){(N‐i‐C3H7)2CC≡CH}](BF4) ( 6 ‐BF4) bearing a terminal alkynyl hydrogen atom, while 2 and 3 revealed to yield intricate reaction mixtures. Compounds 1a / b to 6 ‐BF4 were characterized by multinuclear NMR (1H, 13C, 31P) and IR spectroscopy and elemental analyses, including X‐ray diffraction analysis of 1b , 2 , and 3 .  相似文献   

2.
A series of iridium tetrahydride complexes [Ir(H)4(PSiP‐R)] bearing a tridentate pincer‐type bis(phosphino)silyl ligand ([{2‐(R2P)C6H4}2MeSi], PSiP‐R, R=Cy, iPr, or tBu) were synthesized by the reduction of [IrCl(H)(PSiP‐R)] with Me4N ⋅ BH4 under argon. The same reaction under a nitrogen atmosphere afforded a rare example of thermally stable iridium(III)–dinitrogen complexes, [Ir(H)2(N2)(PSiP‐R)]. Two isomeric dinitrogen complexes were produced, in which the PSiP ligand coordinated to the iridium center in meridional and facial orientations, respectively. Attempted substitution of the dinitrogen ligand in [Ir(H)2(N2)(PSiP‐Cy)] with PMe3 required heating at 150 °C to give the expected [Ir(H)2(PMe3)(PSiP‐Cy)] and a trigonal bipyramidal iridium(I)–dinitrogen complex, [Ir(N2)(PMe3)(PSiP‐Cy)]. The reaction of [Ir(H)4(PSiP‐Cy)] with three equivalents of 2‐norbornene (nbe) in benzene afforded [IrI(nbe)(PSiP‐Cy)] in a high yield, while a similar reaction of [Ir(H)4(PSiP‐R)] with an excess of 3,3‐dimethylbutene (tbe) in benzene gave the C H bond activation product, [IrIII(H)(Ph)(PSiP‐R)], in high yield. The oxidative addition of benzene is reversible; heating [IrIII(H)(Ph)(PSiP‐Cy)] in the presence of PPh3 in benzene resulted in reductive elimination of benzene, coordination of PPh3, and activation of the C H bond of one aromatic ring in PPh3. [IrIII(H)(Ph)(PSiP‐R)] catalyzed a direct borylation reaction of the benzene C H bond with bis(pinacolato)diboron. Molecular structures of most of the new complexes in this study were determined by a single‐crystal X‐ray analysis.  相似文献   

3.
Synthesis, structure, and reactivity of carboranylamidinate‐based half‐sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μCl)Cl}2] (M=Ir, Rh; Cp*=η5‐C5Me5) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18‐electron complexes [Cp*IrCl(CabN‐DIC)] ( 1 a ; CabN‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NHiPr)]), [Cp*RhCl(CabN‐DIC)] ( 1 b ), and [Cp*RhCl(CabN‐DCC)] ( 1 c ; CabN‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NHCy)]). A series of 16‐electron half‐sandwich Ir and Rh complexes [Cp*Ir(CabN′‐DIC)] ( 2 a ; CabN′‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NiPr)]), [Cp*Ir(CabN′‐DCC)] ( 2 b , CabN′‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NCy)]), and [Cp*Rh(CabN′‐DIC)] ( 2 c ) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(CabN,S‐DIC)], [Cp*M(CabN,S‐DCC)] (M=Ir 3 a , 3 b ; Rh 3 c , 3 d ), formed through BH activation, are obtained by reaction of [{Cp*MCl2}2] with carboranylamidinate sulfides [RN?C(closo‐1,2‐C2B10H10)(NHR)]S? (R=iPr, Cy), which can be prepared by inserting sulfur into the C? Li bond of lithium carboranylamidinates. Iridium complex 1 a shows catalytic activities of up to 2.69×106 gPNB ${{\rm{mol}}_{{\rm{Ir}}}^{ - {\rm{1}}} }Synthesis, structure, and reactivity of carboranylamidinate-based half-sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μ-Cl)Cl}(2)] (M = Ir, Rh; Cp* = η(5)-C(5)Me(5)) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18-electron complexes [Cp*IrCl(Cab(N)-DIC)] (1?a; Cab(N)-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NHiPr)]), [Cp*RhCl(Cab(N)-DIC)] (1?b), and [Cp*RhCl(Cab(N)-DCC)] (1?c; Cab(N)-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10))(NHCy)]). A series of 16-electron half-sandwich Ir and Rh complexes [Cp*Ir(Cab(N')-DIC)] (2?a; Cab(N')-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NiPr)]), [Cp*Ir(Cab(N')-DCC)] (2?b, Cab(N')-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10)(NCy)]), and [Cp*Rh(Cab(N')-DIC)] (2?c) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(Cab(N,S)-DIC)], [Cp*M(Cab(N,S)-DCC)] (M = Ir 3?a, 3?b; Rh 3?c, 3?d), formed through BH activation, are obtained by reaction of [{Cp*MCl(2)}(2)] with carboranylamidinate sulfides [RN=C(closo-1,2-C(2)B(10)H(10))(NHR)]S(-) (R = iPr, Cy), which can be prepared by inserting sulfur into the C-Li bond of lithium carboranylamidinates. Iridium complex 1?a shows catalytic activities of up to 2.69×10(6) g(PNB) mol(Ir)(-1) h(-1) for the polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst. Catalytic activities and the molecular weight of polynorbornene (PNB) were investigated under various reaction conditions. All complexes were fully characterized by elemental analysis and IR and NMR spectroscopy; the structures of 1?a-c, 2?a, b; and 3?a, b, d were further confirmed by single crystal X-ray diffraction.  相似文献   

4.
Reactions of Cp*NbCl4 and Cp*TaCl4 with Trimethylsilyl‐azide, Me3Si‐N3. Molecular Structures of the Bis(azido)‐Oxo‐Bridged Complexes [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) and [Cp*TaCl2(μ‐N3)]2(μ‐O) (Cp* = Pentamethylcyclopentadienyl) The chloro ligands in Cp*TaCl4 (1c) can be stepwise substituted for azido ligands by reactions with trimethylsilyl azide, Me3Si‐N3 (A) , to generate the complete series of the bis(azido)‐bridged dimers [Cp*TaCl3‐n(N3)n(μ‐N3)]2 ( n = 0 (2c) , n = 1 (3c) , n = 2 (4c) and n = 3 (5c) ). If the solvent CH2Cl2 contains traces of water, an additional oxo bridge is incorporated to give [Cp*‐TaCl2(μ‐N3)]2(μ‐O) (6c) or [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) (7c) , respectively. Both 6c and 7c are also formed in stoichiometric reactions from [Cp*TaCl2(μ‐OH)]2(μ‐O) (8c) and A . Analogous reactions of Cp*NbCl4 (1b) with A were used to prepare the azide‐rich dinuclear products [Cp*NbCl3‐n(N3)n(μ‐N3)]2 (n = 2 (4b) , and n = 3 (5b) ), and [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) (7b) . The mononuclear complex Cp*Ta(N3)Me3 (10c) is obtained from Cp*Ta(Cl)Me3 and A . All azido complexes were characterised by their IR as well as their 1H and 13C NMR spectra; X‐ray crystal structure analyses are available for 6c and 7b .  相似文献   

5.
Transition Metal Complexes with Sulfur Ligands. XLIV. Ruthenium(II) Complexes with the Sterically Demanding Thioether-thiolate Ligand ?buS4’?2?(= 1,2-Bis(3,5-di(tertiarybutyl)-2-mercaptophenylthio) ethane (2-)) and PPh3, CO, PMe3, NH3, and N2H4 Coligands The coordination properties of the sterically demanding thioether-thiolate ligand ‘buS42? (= 1,2-Bis(3,5-di(tertiarybutyl)-2-mercaptophenylthio)ethane (2-)) towards Ruthenium were investigated. [Ru(PPh3)2 (‘buS4’)], 1 , was obtained from [RuCl2(PPh3)3] and ‘buS4’? Li2. One PPh3 ligand in 1 is labile towards substitution and can be exchanged by L ? CO ( 2 ), PMe3 ( 3 ), or NH3 ( 5 ) yielding [Ru(L)(PPh3)(‘buS4’)]. The PMe3 complex [Ru(PMe3)2(‘buS4’)], 4 , is thermically inert as well as 2, 3 , and [Ru(CO)2(‘buS4’)], 6 , which was obtained from [RuCl2(CO)3THF] and ‘buS4’? Li2. Considering the thermical reaction inertness of 6 , its fast reaction with N2H4 yielding [Ru(N2H4) (CO) (‘buS4’)], 7 , is remarkable; the reaction probably takes place via 19e- intermediates. All ‘buS4’ complexes are better soluble in organic solvents than the corresponding [Ru(‘S4’)] parent compounds, their ν(CO)frequencies or 31PNMR shifts, however, are nearly identical, allowing the conclusion that the influence of the t-butyl groups is topological and not electronic. All now complexes were characterized by elemental analyses as well as IR, NMR, and mass spectroscopy.  相似文献   

6.
The Ru—N bond distances in the title complex, [Ru(NO2)(C11H9N3)(C15H11N3)]BF4 or [Ru(NO2)(tpy)(azpy)]BF4, [tpy is 2,2′:6′,2′′‐ter­pyridine and azpy is 2‐(phenyl­azo)­pyridine], are Ru—Npy 2.063 (4), Ru—Nazo 2.036 (4), Ru—Nnitro 2.066 (3) Å, and Ru—Ntpy 2.082 (4), 1.982 (3) and 2.074 (4) Å. The azo N atom is trans to the nitro group. The azo N=N bond length is 1.265 (5) Å, which is the shortest found in such complexes to date. This indicates a multiple bond between Ru and the N atom of the nitro group, and π‐­backbonding [dπ(Ru) π*(azo)] is decreased.  相似文献   

7.
The silyloxycyclopentadienyl hydride complexes [Re(H)(NO)(PR3)(C5H4OSiMe2tBu)] (R=iPr ( 3 a ), Cy ( 3 b )) were obtained by the reaction of [Re(H)(Br)(NO)(PR3)2] (R=iPr, Cy) with Li[C5H4OSiMe2tBu]. The ligand–metal bifunctional rhenium catalysts [Re(H)(NO)(PR3)(C5H4OH)] (R=iPr ( 5 a ), Cy ( 5 b )) were prepared from compounds 3 a and 3 b by silyl deprotection with TBAF and subsequent acidification of the intermediate salts [Re(H)(NO)(PR3)(C5H4O)][NBu4] (R=iPr ( 4 a ), Cy ( 4 b )) with NH4Br. In nonpolar solvents, compounds 5 a and 5 b formed an equilibrium with the isomerized trans‐dihydride cyclopentadienone species [Re(H)2(NO)(PR3)(C5H4O)] ( 6 a,b ). Deuterium‐labeling studies of compounds 5 a and 5 b with D2 and D2O showed H/D exchange at the HRe and HO positions. Compounds 5 a and 5 b were active catalysts in the transfer hydrogenation reactions of ketones and imines with 2‐propanol as both the solvent and H2 source. The mechanism of the transfer hydrogenation and isomerization reactions was supported by DFT calculations, which suggested a secondary‐coordination‐sphere mechanism for the transfer hydrogenation of ketones.  相似文献   

8.
Reaction between 2‐(1H‐pyrrol‐1‐yl)benzenamine and 2‐hydroxybenzaldehyde or 3,5‐di‐tert‐butyl‐2‐hydroxybenzaldehyde afforded 2‐(4,5‐dihydropyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL1NH, 1a) or 2,4‐di‐tert‐butyl‐6‐(4,5‐dihydropyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL2NH, 1b). Both 1a and 1b can be converted to 2‐(H‐pyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL3N, 2a) and 2,4‐di‐tert‐butyl‐6‐(H‐pyrrolo[1,2‐a]quinoxalin‐4‐yl)phenol (HOL4N, 2b), respectively, by heating 1a and 1b in toluene. Treatment of 1b with an equivalent of AlEt3 afforded [Al(Et2)(OL2NH)] (3). Reaction of 1b with two equivalents of AlR3 (R = Me, Et) gave dinuclear aluminum complexes [(AlR2)2(OL2N)] (R = Me, 4a; R = Et, 4b). Refluxing the toluene solution of 4a and 4b, respectively, generated [Al(R2)(OL4N)] (R = Me, 5a; R = Et, 5b). Complexes 5a and 5b were also obtained either by refluxing a mixture of 1b and two equivalents of AlR3 (R = Me, Et) in toluene or by treatment of 2b with an equivalent of AlR3 (R = Me, Et). Reaction of 2a with an equivalent of AlMe3 afforded [Al(Me2)(OL3N)] (5c). Treatment of 1b with an equivalent of ZnEt2 at room temperature gave [Zn(Et)(OL2NH)] (6), while reaction of 1b with 0.5 equivalent of ZnEt2 at 40 °C afforded [Zn(OL2NH)2] (7). Reaction of 1b with two equivalents of ZnEt2 from room temperature to 60 °C yielded [Zn(Et)(OL4N)] (8). Compound 8 was also obtained either by reaction between 6 and an equivalent of ZnEt2 from room temperature to 60 °C or by treatment of 2b with an equivalent of ZnEt2 at room temperature. Reaction of 2b with 0.5 equivalent of ZnEt2 at room temperature gave [Zn(OL4N)2] (9), which was also formed by heating the toluene solution of 6. All novel compounds were characterized by NMR spectroscopy and elemental analyses. The structures of complexes 3, 5c and 6 were additionally characterized by single‐crystal X‐ray diffraction techniques. The catalysis of complexes 3, 4a, 5a–c, 6 and 8 toward the ring‐opening polymerization of ε‐caprolactone was evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Thermolysis of [Cp*Ru(PPh2(CH2)PPh2)BH2(L2)] 1 (Cp*=η5‐C5Me5; L=C7H4NS2), with terminal alkynes led to the formation of η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)B{R‐C=CH2}(L)2] ( 2 a – c ) and η2‐vinylborane complexes [Cp*Ru(R‐C=CH2)BH(L)2] ( 3 a – c ) ( 2 a , 3 a : R=Ph; 2 b , 3 b : R=COOCH3; 2 c , 3 c : R=p‐CH3‐C6H4; L=C7H4NS2) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a – c are linked by a unique η4‐interaction. Conversions of 1 into 3 a – c proceed through the formation of intermediates 2 a – c . Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ‐borane complex [Cp*RuCO(μ‐H)BH2L] 4 (L=C7H4NS2) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)BH{R‐C=CH2}(L)] 5 and [Cp*Ru(μ‐H)BH{HC=CH‐R}(L)] 6 (R=COOCH3; L=C7H4NS2) by Markovnikov and anti‐Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η4‐σ,π‐borataallyl complex [Cp*Ru(μ‐H)BH{R‐C=CH‐R}(L)] 7 (R=COOCH3; L=C7H4NS2). An agostic interaction was also found to be present in 2 a – c and 5 – 7 , which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, 1H, 11B, 13C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b , 3 a – c and 5 – 7 . DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.  相似文献   

10.
A series of heterodinuclear complexes with acetylene dithiolate (acdt2?) as the bridging moiety were synthesised by a facile one‐pot procedure that avoided use of the highly elusive acetylene dithiol. Generation of the W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] (Tp’=hydrotris(3,5‐dimethylpyrazolyl)borate) and the W–Pd complexes [Tp′W(CN)(CO)(C2S2)Pd(dppe)] and [Tp′W(CO)2(C2S2)Pd(dppe)][PF6] (dppe=1,2‐bis(diphenylphoshino)ethane), which exhibit a [W(η2‐κ2‐C2S2)M] core (M=Ru, Pd), was accomplished by using a transition‐metal‐assisted solvolytical removal of the Me3Si‐ethyl thiol protecting groups. All intermediate species of the reaction have been fully characterised. The highly coloured W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] shows reversible redox chemistry, as does the prototype complex [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)][PF6]. Single crystal X‐ray diffraction and IR, EPR and UV/Vis spectroscopic studies in conjunction with DFT calculations prove the high electronic delocalisation of states over the acdt2? linker. Comparative studies revealed a higher donor strength and more pronounced dithiolate character of acdt2? in [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] relative to [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)]+. In addition, the influence of the overall complex charge on the metric parameters was investigated by single‐crystal X‐ray diffraction studies with the W–Pd complexes [Tp′WL2(C2S2)Pd(dppe)] (L=(CN?)(CO) or (CO)2). The central [W(C2S2)Pd] units exhibit high structural similarity, which indicates the extensive delocalisation of charge over both metals.  相似文献   

11.
Redistribution reactions between diorganodiselenides of type [2‐(R2NCH2)C6H4]2Se2 [R = Et, iPr] and bis(diorganophosphinothioyl disulfanes of type [R′2P(S)S]2 (R = Ph, OiPr) resulted in the hypervalent [2‐(R2NCH2)C6H4]SeSP(S)R′2 [R = Et, R′ = Ph ( 1 ), OiPr ( 2 ); R = iPr, R′ = Ph ( 3 ), OiPr ( 4 )] species. All new compounds were characterized by solution multinuclear NMR spectroscopy (1H, 13C, 31P, 77Se) and the solid compounds 1 , 3 , and 4 also by FT‐IR spectroscopy. The crystal and molecular structures of 3 and 4 were determined by single‐crystal X‐ray diffraction. In both compounds the N(1) atom is intramolecularly coordinated to the selenium atom, resulting in T‐shaped coordination arrangements of type (C,N)SeS. The dithio organophosphorus ligands act monodentate in both complexes, which can be described as essentially monomeric species. Weak intermolecular S ··· H contacts could be considered in the crystal of 3 , thus resulting in polymeric zig‐zag chains of R and S isomers, respectively.  相似文献   

12.
The reaction of pyridine-2,6-dicarbaldehyde or 2,6-diacetylpyridine with 1,2-bis(o-aminophenylthio)ethane (1) in acetonitrile in the presence of stoichiometric amounts of iron(II) perchlorate gave the complexes [(pyN3S2)FeII(ClO4)2] (4) and [(pyN3Me2S2)FeII(ClO4)2] (5) of the 15-membered N3S2 macrocyclic ligands, pyN3S2 ?=?{6,7-dihydro-15,19-nitrilobenzo(e,p)(1,4,7,15)dithiadiazacyclo-heptadecine-N,N′,N″,S,S′} and pyN3Me2S2?=?{6,7-dihydro-16,18-dimethyl-15,19-nitrilobenzo(e,p)(1,4,7,15)dithiadiazacyclo-heptadecine-N,N′,N″,S,S′}, respectively. Physical measurements led to the conclusion that these complexes contained seven-coordinate iron(II) and a single-crystal X-ray examination of 4 confirmed this. Coordination of the Fe(II) center in 4 is best described as distorted pentagonal-bipyramidal with the three nitrogen atoms and two sulfur donors of the macrocycle defining the pentagonal plane and the perchlorate ions occupying axial positions. Room temperature (293?K) magnetic moments of 4 and 5 (μ eff?=?4.9 and 4.7 B.M., respectively) are close to the value predicted for high-spin d6 systems.  相似文献   

13.
The five‐coordinate ruthenium N‐heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr2Me2)4H][BArF4] ( 1 ; IiPr2Me2=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene; ArF=3,5‐(CF3)2C6H3), [Ru(IEt2Me2)4H][BArF4] ( 2 ; IEt2Me2=1,3‐diethyl‐4,5‐dimethylimidazol‐2‐ylidene) and [Ru(IMe4)4H][BArF4] ( 3 ; IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) have been synthesised following reaction of [Ru(PPh3)3HCl] with 4–8 equivalents of the free carbenes at ambient temperature. Complexes 1 – 3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about δ ?41. The tetramethyl carbene complex 3 exhibits a similar chemical shift in toluene, but shows a higher frequency signal in acetonitrile arising from the solvent adduct [Ru(IMe4)4(MeCN)H][BArF4], 4 . The reactivity of 1 – 3 towards H2 and N2 depends on the size of the N‐substituent of the NHC ligand. Thus, 1 is unreactive towards both gases, 2 reacts with both H2 and N2 only at low temperature and incompletely, while 3 affords [Ru(IMe4)42‐H2)H][BArF4] ( 7 ) and [Ru(IMe4)4(N2)H][BArF4] ( 8 ) in quantitative yield at room temperature. CO shows no selectivity, reacting with 1 – 3 to give [Ru(NHC)4(CO)H][BArF4] ( 9 – 11 ). Addition of O2 to solutions of 2 and 3 leads to rapid oxidation, from which the RuIII species [Ru(NHC)4(OH)2][BArF4] and the RuIV oxo chlorido complex [Ru(IEt2Me2)4(O)Cl][BArF4] were isolated. DFT calculations reproduce the greater ability of 3 to bind small molecules and show relative binding strengths that follow the trend CO ? O2 > N2 > H2.  相似文献   

14.
Deprotonation of the aminophosphanes Ph2PN(H)R 1a – 1h [R = tBu ( 1a ), 1‐adamantyl ( 1b ), iPr ( 1c ), CPh3 ( 1d ), Ph ( 1e ), 2,4,6‐Me3C6H2 (Mes) ( 1f ), 2,4,6‐tBu3C6H2 (Mes*) ( 1g ), 2,6‐iPr2C6H3 (DIPP) ( 1h )], followed by reactions of the phosphanylamide salts Li[Ph2PNR] 2a , 2b , 2g , and 2h with the P‐chlorophosphaalkene (Me3Si)2C=PCl, and of 2a – 2g with (iPrMe2Si)2C=PCl, gave the isolable P‐phosphanylamino phosphaalkenes (Me3Si)2C=PN(R)PPh2 3a , 3b , 3g , and (iPrMe2Si)2C=PN(R)PPh2 4a – 4g . 31P NMR spectra, supported by X‐ray structure determinations, reveal that in compounds 2a , 2b , 3a , and 3b , with bulky N‐alkyl groups the Si2C=P–N–P skeleton is non‐planar (orthogonal conformation), whereas 3g , 3h , and 4g with bulky N‐aryl groups exhibit planar conformations of the Si2C=P–N–P skeleton. Solid 3g and 4g exhibit cisoid orientation of the planar C=P–N–C units (planar I) but in solid 3h the transoid rotamer is present (planar II). From 3g , 4d , and 4g mixtures of rotamers were detected in solution by pairs of 31P NMR patterns ( 3h : line broadening).  相似文献   

15.
The Reactions of cyclo ‐Tristannazanes, [(CH3)2Sn–N(R)]3, with the Trimethyl Derivatives of Aluminium, Gallium, and Indium The cyclo‐tristannazanes [Me2Sn–N(R)]3 (with R = Me, nPr, iPr, iBu) have been prepared from Me2SnCl2 and LiN(H)R in a 1 : 2 molar ratio. With MMe3 (M = Al, Ga, In) they form the dimeric dimethylmetal trimethylstannyl(alkyl)amides [Me2M–N(R)SnMe3]2 in good yields. The mass, NMR (1H, 13C, 119Sn), and vibrational spectra are discussed and compared with the spectra of the tristannazanes. Thermolysis of the gallium amidocompounds splits SnMe4 to form methylgallium imido derivatives with cage structures. The crystal structures of selected stannylamido complexes have been determined by X‐ray structure analysis.  相似文献   

16.
New complexes of Cu(I) and Ru(II) with elemental (white) phosphorus (P4), [Cu(C5H-i-Pr4)(η2-P4)], [Cu(C5H-i-Pr4)(μ,η2:1-P4)Cu(C5H-i-Pr4)], and [Ru(C5Me5)(PCy3)(η2-P4)Cl], are synthesized with tetraphosphorus molecule as bidentate η2-ligand. The complexes are obtained by reacting elemental phosphorus with the Cu carbonyl(tetraisopropylcyclopentadienyl) complex [Cu(C5H-i-Pr4)(CO)] or with Ru(II) (pentamethylcyclopentadienyl)(tricyclohexylphosphine) chloride, [Ru(C5Me5)(PCy3)Cl]. The structures and compositions of the obtained complexes are studied by 1H, 31P NMR method and elemental analysis. The P4 molecule is connected to Cu(I) and Ru(II) fragments through the P-P edge due to a side coordination.  相似文献   

17.
The electronic structures of the five members of the electron transfer series [Mo(bpy)3]n (n=3+, 2+, 1+, 0, 1?) are determined through a combination of techniques: electro‐ and magnetochemistry, UV/Vis and EPR spectroscopies, and X‐ray crystallography. The mono‐ and dication are prepared and isolated as PF6 salts for the first time. It is shown that all species contain a central MoIII ion (4d3). The successive one‐electron reductions/oxidations within the series are all ligand‐based, involving neutral (bpy0), the π‐radical anion (bpy.)1?, and the diamagnetic dianion (bpy2?)2?: [MoIII(bpy0)3]3+ (S=3/2), [MoIII(bpy.)(bpy0)2]2+ (S=1), [MoIII(bpy.)2(bpy0)]1+ (S=1/2), [MoIII(bpy.)3] (S=0), and [MoIII(bpy.)2(bpy2?)]1? (S=1/2). The previously described diamagnetic dication “[MoII(bpy0)3](BF4)2” is proposed to be a diamagnetic dinuclear species [{Mo(bpy)3}22‐O)](BF4)4. Two new polynuclear complexes are prepared and structurally characterized: [{MoIIICl(Mebpy0)2}22‐O)]Cl2 and [{MoIV(tpy.)2}22‐MoVIO4)](PF6)2?4 MeCN.  相似文献   

18.
Reaction of LWI(CO)n [L=hydrotris(3,5-dimethylpyrazol-1-yl)borate, n=2, 3] with NH4[S2PR2] [R=OEt, OPri, (−)-mentholate (R*), Ph] in acetonitrile or THF results in the formation of the dithio ligand complexes LW(S2PR2-S)(CO)2. The yellow–orange, diamagnetic complexes exhibit IR spectra featuring two ν(CO) bands at ca. 1950 and 1840 cm−1 and 1H-NMR spectra consistent with fluxional behavior in solution. Crystallographic characterisation of LW{S2P(OPri)2-S}(CO)2 revealed a six-coordinate, distorted octahedral complex composed of a tungsten center coordinated by a monodentate dithiophosphate ligand, two cis carbonyl ligands, and a facial, tridentate L ligand. Unlike analogous complexes bearing strictly monodentate sulfur donor ligands, the LW(S2PR2)(CO)2 complexes undergo reactions with oxygen atom donors to produce (carbonyl)oxo complexes of the type LWO(S2PR2-S)(CO).  相似文献   

19.
On the Reactivity of Titanocene Complexes [Ti(Cp′)22‐Me3SiC≡CSiMe3)] (Cp′ = Cp, Cp*) towards Benzenedicarboxylic Acids Titanocene complexes [Ti(Cp′)2(BTMSA)] ( 1a , Cp′ = Cp = η5‐C5H5; 1b , Cp′ = Cp* = η5‐C5Me5; BTMSA = Me3SiC≡CSiMe3) were found to react with iodine and methyl iodide yielding [Ti(Cp′)2(μ‐I)2] ( 2a / b ; a refers to Cp′ = Cp and b to Cp′ = Cp*), [Ti(Cp′)2I2] ( 3a / b ) and [Ti(Cp′)2(Me)I] ( 4a / b ), respectively. In contrast to 2a , complex 2b proved to be highly moisture sensitive yielding with cleavage of HCp* [{Ti(Cp*)I}2(μ‐O)] ( 7 ). The corresponding reactions of 1a / b with p‐cresol and thiophenol resulted in the formation of [Ti(Cp′)2{O(p‐Tol)}2] ( 5a / b ) and [Ti(Cp′)2(SPh)2] ( 6a / b ), respectively. Reactions of 1a and 1b with 1,n‐benzenedicarboxylic acids (n = 2–4) resulted in the formation of dinuclear titanium(III) complexes of the type [{Ti(Cp′)2}2{μ‐1,n‐(O2C)2C6H4}] (n = 2, 8a / b ; n = 3, 9a / b ; n = 4, 10a / b ). All complexes were fully characterized analytically and spectroscopically. Furthermore, complexes 7 , 8b , 9a ·THF, 10a / b were also be characterized by single‐crystal X‐ray diffraction analyses.  相似文献   

20.
Treatment of the thioether‐substituted secondary phosphanes R2PH(C6H4‐2‐SR1) [R2=(Me3Si)2CH, R1=Me ( 1PH ), iPr ( 2PH ), Ph ( 3PH ); R2=tBu, R1=Me ( 4PH ); R2=Ph, R1=Me ( 5PH )] with nBuLi yields the corresponding lithium phosphanides, which were isolated as their THF ( 1 – 5Pa ) and tmeda ( 1 – 5Pb ) adducts. Solid‐state structures were obtained for the adducts [R2P(C6H4‐2‐SR1)]Li(L)n [R2=(Me3Si)2CH, R1=nPr, (L)n=tmeda ( 2Pb ); R2=(Me3Si)2CH, R1=Ph, (L)n=tmeda ( 3Pb ); R2=Ph, R1=Me, (L)n=(THF)1.33 ( 5Pa ); R2=Ph, R1=Me, (L)n=([12]crown‐4)2 ( 5Pc )]. Treatment of 1PH with either PhCH2Na or PhCH2K yields the heavier alkali metal complexes [{(Me3Si)2CH}P(C6H4‐2‐SMe)]M(THF)n [M=Na ( 1Pd ), K ( 1Pe )]. With the exception of 2Pa and 2Pb , photolysis of these complexes with white light proceeds rapidly to give the thiolate species [R2P(R1)(C6H4‐2‐S)]M(L)n [M=Li, L=THF ( 1Sa , 3Sa – 5Sa ); M=Li, L=tmeda ( 1Sb , 3Sb – 5Sb ); M=Na, L=THF ( 1Sd ); M=K, L=THF ( 1Se )] as the sole products. The compounds 3Sa and 4Sa may be desolvated to give the cyclic oligomers [[{(Me3Si)2CH}P(Ph)(C6H4‐2‐S)]Li]6 (( 3S )6) and [[tBuP(Me)(C6H4‐2‐S)]Li]8 (( 4S )8), respectively. A mechanistic study reveals that the phosphanide–thiolate rearrangement proceeds by intramolecular nucleophilic attack of the phosphanide center at the carbon atom of the substituent at sulfur. For 2Pa / 2Pb , competing intramolecular β‐deprotonation of the n‐propyl substituent results in the elimination of propene and the formation of the phosphanide–thiolate dianion [{(Me3Si)2CH}P(C6H4‐2‐S)]2?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号