首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
It follows from the analysis of the precision numerical calculations of the energy spectrum of a hydrogen atom in a static magnetic field that the Zeldovich effect (rearrangement of the atomic spectrum) in the spectrum of atomic levels is observed at superstrong magnetic fields B≥5×1011 G. Magnetic fields of such strengths are reached in neutron stars and magnetic white dwarfs. We established a lower bound Bmin for the fields required for this effect to occur.  相似文献   

2.
We consider the problem of a hydrogen atom in a superstrong magnetic field, B? B a =2.35×109 G. The analytical formulas that describe the energy spectrum of this atom are derived for states with various quantum numbers nρ and m. A comparison with available calculations shows their high accuracy for B?B a . We note that the derived formulas point to a manifestation of the Zeldovich effect, i.e., a rearrangement of the atomic spectrum under the influence of strong short-range Coulomb potential distortion. We discuss the relativistic corrections to level energies, which increase in importance with magnetic field and become significant for B?1014 G. We suggest the parameters in terms of which the Zeldovich effect has the simplest form. Analysis of our precision numerical calculations of the energy spectrum for a hydrogen atom in a constant magnetic field indicates that the Zeldovich effect is observed in the spectrum of atomic levels for superstrong fields, B?5×1011 G. Magnetic fields of such strength exist in neutron stars and, possibly, in magnetic white dwarfs. We set lower limits for the fields Bmin required for the manifestation of this effect. We discuss some of the properties of atomic states in a superstrong magnetic field, including their mean radii and quadrupole moments. We calculated the probabilities of electric dipole transitions between odd atomic levels and a deep ground level.  相似文献   

3.
The magnetic properties of ferroborate single crystals with substituted compositions Nd1 − x Dy x Fe3(BO3)4 (x = 0.15, 0.25) with competing exchange Nd-Fe and Dy-Fe interactions are investigated. For each composition, we observed a spontaneous spin-reorientation transition from the easy-axis to the easy-plane state and step anomalies on the magnetization curves for the spin-flop transition induced by a magnetic field B | c. The measured parameters and effects are interpreted using a unified theoretical approach based on the molecular field approximation and on calculations performed in the crystal-field model for the rare-earth ion. The experimental temperature dependences of the initial magnetic susceptibility from T = 2 K to T = 300 K, anomalies on the magnetization curves for B | c in fields up to 1.8 T, and their evolution with temperature, as well as temperature and field dependences of magnetization in fields up to 9 T are described. In the interpretation of experimental data, the crystal-field parameters in trigonal symmetry for the rare-earth subsystem are determined, as well as the parameters of Nd-Fe and Dy-Fe exchange interactions.  相似文献   

4.
We report on our studies of magnetic breakdown (MB) in coupled GaAs/Al0.3Ga0.7As double quantum wells (DQWs) subject to crossed magnetic fields. MB is a failure of semiclassical theory that occurs when a magnetic field causes electrons to tunnel across a gap ink-space from one Fermi surface (FS) branch to another. We study MB in a two-branch FS created by subjecting a DQW to an in-plane magnetic field (B). The principal effect ofBis a distortion in the dispersion curve of the system, yielding a FS consisting of two components, a lens-shaped inner orbit and an hour-glass-shaped outer orbit. The perpendicular field (B) causes Landau level formation and Shubnikov–de Haas (SdH) oscillations for each branch of the FS. At higher perpendicular fields MB occurs and electrons tunnel throughk-space from one FS orbit to the other. MB is observed by noting which peaks are present in the Fourier power spectrum of the magnetoresistance versus 1/Bat constantB. We observe MB in two DQW samples over a range ofB.  相似文献   

5.
Investigations on the ambipolar diffusion of an electron-hole plasma transverse to a magnetic field have been carried out in InSb. A plasma layer, produced at the surface of the sample by a short laser pulse, was moved through the sample in crossed electric and magnetic fields by the Lorentz force. From the broadening of the plasma layer we found at 80K an enhanced diffusion coefficient which decreased proportional to 1/B for magnetic fields higher than 1T, constrary to the expected classical 1/B 2 dependence. Furthermore, the diffusion coefficient was strongly dependent on the electric field. The ambipolar drift velocity, measured simultaneously showed a classical behaviour. Together with the enhanced diffusion we observed instabilites in the electric potential. The instability threshold decreased towards the cathode.  相似文献   

6.
Intergalactic magnetic fields are assumed to have been spontaneously generated at the reheating stage of the early Universe, due to vacuum polarization of non-Abelian gauge fields at high temperature. The fact that the screening mass of this type of fields has zero value was discovered recently. A procedure to estimate their field strengths, B(T), at different temperatures is here developed, and the value B(T ew)∼1014 G at the electroweak phase transition temperature is derived by taking into consideration the present value of the intergalactic magnetic field strength, B 0∼10−15 G, coherent on the ∼1 Mpc scale. As a particular case, the standard model is considered and the field scale at high temperature is estimated in this case. Model-dependent properties of the phenomena under investigation are briefly discussed, too.  相似文献   

7.
We report on the magnetic-field-dependent optically detected magnetic resonance (ODMR) spectra for polycrystalline samples of the bridged Zr(IV) metallocenes, Me2Si<(Cp2)ZrCl2 ( (dimethylsilylbis(cyclopentadienyl)zirconium-dichloride) and Me2C<(Cp2)ZrCl2 (iso-propylidenebis(cyclopentadienyl)zirconium-dichloride). ODMR spectra at zero magnetic field were recorded by frequency sweeping a microwave source from 0.1 to 10 GHz with the sample contained in a microwave helix. ODMR spectra at finite magnetic fields were recorded with the sample contained in either a helix or a slotted-tube resonator with a fixed microwave frequency and sweeping the magnetic field. For all experiments, the sample and microwave probes were contained in an immersion dewar cryostat, and the temperature was held at about 2 K. All three zero field ODMR transitions (2|E|, and |D| − |E| and |D|+|E|) were observed in the frequency-swept ODMR spectra recorded at zero and small magnetic fields. The zero-field frequency-swept spectra allowed the determination ofD andE values uniquely. For frequency-swept small-field ODMR spectra recorded at successively higher magnetic fields, each of the ODMR line intensities was observed to increase with increasing magnetic field. This intensity increase was observed for all three ODMR lines, reflecting an increase in the total intensity rather than simply a change in the polarization of the triplet sublevels. The latter would result in a change in the relative intensities of the ODMR lines but would not change simultaneously the intensities of all three lines. The ODMR line intensities increase in proportion toB n, wheren<1. This field dependence is weaker than the expected proportionalB 2 dependence from the Zeeman effect, which likely originates from the magnetic field dependence of the spin relaxation rates between the triplet sublevels. Magnetic-field-swept ODMR spectra recorded at fixed microwave frequencies in the X-band frequency range (9.8 GHz) do not show all three expected classic Pake powder pattern line shape profiles, exhibited by the molecules with their magneticZ, Y, andX axes parallel to the external magnetic field. In particular, the intensity for molecular magneticY-axes parallel to the external magnetic field is completely suppressed. In addition, an external magnetic field dependence in field-swept ODMR spectra was observed, which results in a linear decrease of the ODMR intensity with increasing strength of the external magnetic field over and above that would be expected in a polycrystalline spectrum. The data are analyzed by simulation of the continuous-wave ESR spectrum with the eigenvalues and eigenvectors of the spin Hamiltonian matrix characterizing the triplet state exhibiting the ODMR spectrum, in conjunction with homotopy, as a function of the orientations of the magnetic axes of the various molecules in a polycrystalline sample. This approach is useful to interpret the experimentally observed ODMR transition frequencies andg-values but does not take the amplitudes in the ODMR spectrum. The corrections required to modify the continuous-wave ESR spectral amplitudes that reproduce the observed ODMR amplitudes are effects associated with the ODMR processes.  相似文献   

8.
We present the first radiative lifetime measurements and magneto-photoluminescence results of excited states in InGaAs/GaAs semiconductor self-assembled quantum dots. By increasing the photo-excitation intensity, excited state interband transitions up ton= 5 can be observed in the emission spectrum. The dynamics of the interband transitions and the inter-sublevel relaxation in these zero-dimensional energy levels lead to state-filling of the lower-energy states, allowing the quasi-Fermi level to be raised by more than 200 meV due to the combined large inter-sublevel spacing and the low density of states. The decay time of each energy level obtained under various excitation conditions is used to evaluate the inter-sublevel thermalization time. Finally, the emission spectrum of the dots filled with an average of about eight excitons is measured in magnetic fields up to 13 Tesla. The dependences of the spectrum as a function of carrier density and magnetic field are compared to calculations and interpreted in terms of coherent many-exciton states and their destruction by the magnetic field.  相似文献   

9.
Various approaches to computing the energies of the ground state and excited levels of the hydrogen atom in an ultrastrong magnetic field B that considerably exceeds the field B a = m e 2 e 3 c/ħ 3 ∼ 109 G are considered. The effects of polarization of vacuum and anomalous magnetic moment of the electron on the position of the atomic levels are discussed. The vacuum polarization effects are negligibly weak for B < 1015 G but become significant in fields B ≫ 1016 G, in which these effects qualitatively modify the atomic spectrum in this range. The difference in the behaviors of the even and odd energy levels for BB a is analyzed and the formulas for the energies of odd levels as a function of field B are refined.  相似文献   

10.
Quantum electronic states in a dot (antidot) array in the presence of a dc magnetic field are studied. A new method of numerical calculation of the electron spectrum and wave functions in a two-dimensional periodic potential and perpendicular magnetic field is proposed. The magnetic-subband energies, density of electron states, and electron density |ψ(x,y)|2, as well as the amplitude of the potential, and lattice period and degree of anisotropy for different magnetic fields have been found. The calculations were performed for quantum dots in the In0.2Ga0.8As-GaAs and GaAs-Al0.3Ga0,7As systems. The rearrangement of the spectrum with variation of magnetic field and with transition from the tight-binding to weak-binding approximation is studied (ω c is the cyclotron frequency, and V 0 is the periodic-potential amplitude). The calculations show that the two-dimensional lattices epitaxially grown presently on semiconductor surfaces permit observation of quantum effects associated with rearrangement of the spectrum (electron transport and optical absorption) in magnetic fields H⩽1 MG. Fiz. Tverd. Tela (St. Petersburg) 40, 1134–1139 (June 1998)  相似文献   

11.
Resonance relaxation displacements of dislocations in NaCl crystals placed in crossed static and alternating ultralow magnetic fields in the electron paramagnetic resonance scheme are discussed. The Earth’s magnetic field BEarth ≈ 50μT and other fields in the range of 26–261 μT are used as the static field. New strongly anisotropic properties of the effect have been revealed. Frequency spectra including numerous peaks of paths at low pump frequencies beginning with 10 kHz, as well as the quartet of equidistant peaks at high frequencies (~1.4 MHz at B=BEarth), have been measured. The effect is also observed in the pulsed pump field with a resonance duration of ~0.5 μs. Resonance changes have been detected in the microhardness of ZnO, triglycine sulfate, and potassium hydrogen phthalate crystals after their exposure in the Earth’s magnetic field in the same electron paramagnetic resonance scheme.  相似文献   

12.
Using refined preparation techniques, cadmium guest atoms have been positioned at different sites on the surfaces of nickel crystals. The magnetic hyperfine fields and the electric field gradients at the Cd nuclei were measured by time-dependent perturbed angular correlation (TDPAC) spectroscopy of the emitted gamma radiations. By measuring the combined interactions, electric field gradients and magnetic hyperfine fields can be unambiguously attributed to each surface site. The signs of the magnetic hyperfine fields are determined by applying an external magnetic field and choosing the appropriate γ-ray detector configuration. The measured fields correlate with the number of neighbouring host atoms. Band structure calculations confirm this finding and predict magnetic fields for various sp elements from the band structure of the s-like conduction electrons. The quadrupolar interactions are manifestations of the balance in the occupation of the guest p-sublevels. These results provide new information on the structure and formation of electronic configurations of sp elements in different local environments and will contribute to understanding electronic effects on surfaces.  相似文献   

13.
The quantum-well D(−)-states in the presence of magnetic field longitudinal with respect to the growth axis are considered. Within a model of zero-radius potential, an equation is derived that determines the dependence of the D(−)-state binding energy on the parameters of the potential of the structure, coordinates of the D(−) center, and the magnetic field. The results are compared with the experimental dependence of the D(−)-state binding energy on the magnetic field and the data are shown to be in good agreement with calculations for magnetic fields B < 10 T. A dimension factor is defined in the dependence of the binding energy on coordinates for the 2D → 1D → 0D transition. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 25–29.  相似文献   

14.
A procedure is proposed for precise scanning of the (B , B ) plane between the magnetic field projections that are perpendicular and parallel to (quasi-)two-dimensional layers when measuring their longitudinal and Hall magnetoresistances. Investigations of a n-In x Ga1−x As/GaAs double quantum well (x ≈ 0.2) performed using this procedure make it possible to reveal a number of the features of the magnetoresistance, which appear due to a complex energy spectrum of the double quantum well in a parallel field, and to separate them from the structures associated with the magnetic breakdown. The trajectories representing the features of the magnetoresistance in the (B , B ) plane are described by the semiclassical calculations of the quantization of the energy spectrum of the double quantum well under the action of the perpendicular field component. The structures appearing due to the magnetic breakdown are amplified with increasing the total magnetic field magnitude and, in the samples with low mobility, completely suppress the features caused by the motion of an electron with a constant pseudospin component. The peaks corresponding to the magnetic breakdown are split in a strong parallel field due to the spin splitting of the Landau levels. These splittings correspond to the effective Landé factor |g*| ≈ 3. Original Russian Text ? M.V. Yakunin, S.M. Podgornykh, V.N. Neverov, 2007, published in Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 1, pp. 241–249.  相似文献   

15.
Following Pevtsov and Latushko, we study the current helicity pattern of the large-scale magnetic field on the photosphere. We use the same technique as theirs to derive the vector magnetic field (B r , B θ , B ϕ ) from full-disk longitudinal magnetograms based on the assumption that large-scale magnetic fields evolve rather slowly and the variations of the longitudinal magnetic fields within certain time duration are caused by the changing position angles only. Different from their study, we have calculated the current helicity maps directly from the derived vector magnetograms, rather than from obtaining the latitudinal variation of h c by ignoring the role of B θ component and averaging B r and B ϕ over all solar longitudes. This approach significantly strengthens the evidence of the hemispheric rule presented in the reconstructed vector magnetic field. Our study shows that the established hemispheric sign rule, that is, positive helicity sign in the southern hemisphere and negative helicity sign in the northern hemisphere, is applicable everywhere in the global magnetic field, namely, also evident in weak fields outside active regions, and that the obtained sign pattern is independent of the longitudinal magnetograms and the parameters that we have used.  相似文献   

16.
张蕾  董全力  王首钧  盛政明  张杰 《中国物理 B》2010,19(7):78701-078701
Quasistatic magnetic fields generated by nonrelativistic intense linearly polarized (LP) and circularly polarized (CP) laser pulses in an initially uniform underdense plasma in the collision-dominated limit are investigated analytically. Using a selfconsistent analytical model, we perform a detailed derivation of quasistatic magnetic fields in the laser pulse envelope in the collision-dominated limit to obtain exact analytical expressions for magnetic fields and discuss the dependence of magnetic fields on laser and plasma parameters. Equations for quasistatic magnetic fields including both axial component Bz and the azimuthal one Bθ are derived simultaneously from such a selfconsistent model. The dependence of quasistatic magnetic field on incident laser intensity, transverse focused radius of laser pulse, electron density and electron temperature is discussed.  相似文献   

17.
The magnetic hyperfine fields B hf for the 4d and 5sp elements Rb through Xe at the substitutional site in ferromagnetic iron were derived from scalar-relativistic ab-initio FLAPW calculations for Fe15X supercells with a gradient-corrected density functional. Lattice relaxation and volume expansion were calculated self-consistently. The B hf values for all cases except Rb and Sr are in excellent agreement with the experimental results.  相似文献   

18.
The thermospheric crosswind velocities at an altitude of 400 km measured by an accelerometer on board of the CHAMP satellite are compared with the results of model calculations performed using the Upper Atmosphere Model (UAM). The results of measurements averaged over the year in 2003 reveal a two-vortex structure of high-latitude winds corresponding to magnetospheric-ionospheric convection of ions in the F2 ionosphere region. A similar picture with similar speed values was obtained in model calculations. A comparison of the crosswind speed obtained in individual measurements on October 28, 2003 with the corresponding model values revealed close agreement between them in some flights and differences in others. Taking into account the dependence of convection electric field on the B y component of interplanetary magnetic field sometimes improved agreement between thermospheric crosswind speeds obtained in model calculations and measured using the satellite.  相似文献   

19.
The galvanomagnetic properties of single-crystal samples of the Bi0.93Sb0.07 semiconductor alloy with the electron density n = 1.6 × 1017 cm−3 in magnetic fields up to 14 T at T = 1.6 K have been investigated. The resistivity ρ and Hall coefficient R have been measured as functions of the magnetic field directed along the binary axis of a crystal for a current flowing through a sample along the bisector axis; i.e., the components ρ22 and R 32, 1 have been measured. The strong anisotropy of the electron spectrum of the samples makes it possible to separately observe quantum oscillations of the magnetoresistance ρ22(H) for HC 2 in low magnetic fields for two equivalent ellipsoids with small extremal cross sections (secondary ellipsoids) and in high magnetic fields for electrons of the ellipsoid with a large extremal cross section (main ellipsoid). An increase in the energy of the electrons of secondary ellipsoids in the quantum limit magnetic fields is accompanied by the flow of electrons to the main ellipsoid; i.e., an electronic topological transition occurs from the three-valley electron spectrum to the single-valley one. After the flow stops, the Fermi energy E F increases from 18 meV to 27.8 meV. With an increase in the quantizing magnetic field, the Fermi energy of the electrons decreases both in the region of quantum oscillations of the resistance that are attributed to the electrons of the secondary ellipsoids and in the region of oscillations associated with the electrons of the main ellipsoid. The Hall coefficient R 32, 1 decreases in high magnetic fields; this behavior indicates the absence of the electron magnetic freezing effect.  相似文献   

20.
The dynamics of back cathode bombardment (BCB) instability in a magnetron diode (a coaxial diode in a magnetic field, BB 0zB 0) is numerically simulated. The quasi-stationary regime of electron leakage across the high magnetic field (B 0/B cr > 1.1, where B cr is the insulation critical field) is realized. An electron beam in the electrode gap is split into a series of bunches in the azimuthal direction and generates the electric field component E θ(r, θ, t), which accelerates some of the electrons. Having gained an extra energy, these electrons bombard the cathode, causing secondary electron emission. The rest of the electrons lose kinetic energy and move toward the anode. Instability is sustained if the primary emission from the cathode is low and the secondary emission coefficient k se=I se/I e, BCB is greater than unity. The results of numerical simulation are shown to agree well with experimental data. A physical model of back-bombardment instability is suggested. Collective oscillations of charged flows take place in the gap with crossed electric and magnetic fields (E × B field) when the electrons and E × B field exchange momentum and energy. The self-generation and self-organization of flows are due to secondary electron emission from the cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号