首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Cyclization/hydrosilylation of substituted 1-vinyl-1-(3-butenyl)cycloalkanes catalyzed by a 1:1 mixture of (phen)Pd(Me)Cl (1) and NaBAr(4) [phen = 1,10-phenanthroline; Ar = 3,5-C(6)H(3)(CF(3))(2)] formed silylated spirocycles in high yield with excellent regio and diastereoselectivity. Cyclization/hydrosilylation of substituted 3-(3-butenyl)cycloalkenes or 2,3-diallyl-5,6-dimethyl-1,4-hydroquinone diacetate (16) formed silylated fused bicyclic complexes in good yield. Reaction of substituted 1,6,11-nonatrienes with silane catalyzed by 1/NaBAr(4) led to cascade cyclization with hydrosilylation. This latter procedure was employed in the synthesis of silylated bicyclopentanes and a linear triquinane.  相似文献   

2.
Pentasubstituted disiloxanes and silanes of the form HSiMe(2)CH(x)Ph(3-x)(x = 1 or 2) reacted with dimethyl diallylmalonate (1) and other functionalized 1,6-dienes in the presence of a catalytic 1:1 mixture of (N-N)Pd(Me)Cl [N-N = (R)-(+)-4-isopropyl-2-(2-pyridinyl)-2-oxazoline] [(R)-2] and NaBAr(4) [Ar = 3,5-C(6)H(3)(CF(3))(2)] to form the corresponding silylated cyclopentanes in good yield with high diastereoselectivity. The enantioselectivity of cyclization/hydrosilylation of 1 with disiloxanes and functionalized silanes at -20 degrees C increased in the following order: HSiMe(2)OSiMe(3) (75% ee) < HSiMe(2)OSiMe(2)-t-Bu (80% ee) < HSi(i-Pr)(2)OSiMe(3) (86% ee) = HSiMe(2)Bn (86% ee) < HSiMe(2)OSi(i-Pr)(3) (89% ee) < HSiMe(2)OSiPh(2)-t-Bu (91% ee) < HSiMe(2)CHPh(2) (93% ee). Silylated cyclopentanes derived from HSiMe(2)OSiMe(3) were oxidized with excess KF and peracetic acid at room temperature for 48 h to form the corresponding hydroxymethylcyclopentanes in good yield (82-95%). Silylated cyclopentanes derived from HSiMe(2)OSiPh(2)t-Bu were oxidized with a mixture of tetrabutylammonium fluoride and either H(2)O(2) or peracetic acid to form the corresponding alcohols in 48-76% yield. Silylated carbocycles generated from benzhydryldimethylsilane were oxidized with a mixture of TBAF/KHCO(3)/H(2)O(2) in 71-98% yield. Asymmetric cyclization/hydrosilylation/oxidation employing benzhydryldimethylsilane tolerated allylic and terminal olefinic substitution and a range of functional groups.  相似文献   

3.
Pei T  Widenhoefer RA 《Organic letters》2000,2(10):1469-1471
[reaction--see text] Pentamethyldisiloxane reacts with a range of functionalized dienes in the presence of a catalytic 1:1 mixture of (N-N)Pd(Me)Cl [N-N = 1, 10-phenanthroline or (R)-(+)-4-isopropyl-2-(2-pyridinyl)-2-oxazoline] and NaBAr(4) [Ar = 3,5-C(6)H(3)(CF(3))(2)] to form the corresponding silylated carbocycles in good yield and with good stereoselectivity. Treatment of these silylated carbocycles with excess KF and peracetic acid at room temperature for 48 h formed the corresponding alcohols in excellent yield with retention of stereochemistry.  相似文献   

4.
The results of kinetic, deuterium-labeling, and low-temperature NMR studies have established a mechanism for the palladium-catalyzed cyclization/hydrosilylation of dimethyl diallylmalonate (1) with triethylsilane involving rapid, irreversible conversion of the palladium silyl complex [(phen)Pd(SiEt(3))(NCAr)](+) [BAr(4)](-) [Ar = 3,5-C(6)H(3)(CF(3))(2)] (4b) and 1 to the palladium 5-hexenyl chelate complex [(phen)Pd[eta(1),eta(2)-CH(CH(2)SiEt(3))CH(2)C(CO(2)Me)(2)CH(2)CH=CH(2)]](+) [BAr(4)](-) (5), followed by intramolecular carbometalation of 5 to form the palladium cyclopentylmethyl complex trans-[(phen)Pd[CH2CHCH2C(CO2Me)2CH2CHCH2SiEt3](NCAr)]+ [BAr4]- (6), and associative silylation of 6 to release 3 and regenerate 4b.  相似文献   

5.
A 1:1 mixture of the platinum dimethyl diimine complex [PhN[double bond]C(Me)C(Me)[double bond]NPh]PtMe(2) (4a) and B(C(6)F(5))(3) catalyzed the cyclization/hydrosilylation of dimethyl dipropargylmalonate (1) and HSiEt(3) to form 1,1-dicarbomethoxy-3-methylene-4-(triethylsilylmethylene)cyclopentane (3) in 82% isolated yield with 26:1 Z:E selectivity. Platinum-catalyzed diyne cyclization/hydrosilylation tolerated a range of functional groups including esters, sulfones, acetals, silyl ethers, amides, and hindered ketones. Diynes that possessed propargylic substitution underwent facile cyclization/hydrosilylation to form silylated 1,2-dialkylidene cyclopentanes as mixtures of regioisomers. Diynes that possessed an electron-deficient internal alkyne underwent cyclization/hydrosilylation in moderate yield to form products resulting from silyl transfer to the less substituted alkyne. The silylated 1,2-dialkylidenecyclopentanes formed via diyne cyclization/hydrosilylation underwent a range of transformations including protodesilylation, Z/E isomerization, and [4 + 2] cycloaddition with dieneophiles.  相似文献   

6.
In the palladium-catalyzed asymmetric hydrosilylation of styrene (3a) with trichlorosilane, several chiral monophosphine ligands, (R)-2-diarylphosphino-1,1'-binaphthyls (2a-g), were examined for their enantioselectivity. The highest enantioselectivity was observed in the reaction with (R)-2-bis[3,5-bis(trifluoromethyl)phenyl]phosphino-1,1'-binaphthyl (2g), which gave (S)-1-phenylethanol (5a) of 98% ee after oxidation of the hydrosilylation product, 1-phenyl-1-(trichlorosilyl)ethane (4a). The palladium complex of 2g also efficiently catalyzed the asymmetric hydrosilylation of substituted styrenes on the phenyl ring or at the beta position to give the corresponding chiral benzylic alcohols of over 96% ee. Deuterium-labeling studies on the hydrosilylation of regiospecifically deuterated styrene revealed that beta-hydrogen elimination from 1-phenylethyl(silyl)palladium intermediate is very fast compared with reductive elimination giving hydrosilylation product when ligand 2g is used. The reaction of o-allylstyrene (9) with trichlorosilane catalyzed by (R)-2g/Pd gave (1S,2R)-1-methyl-2-(trichlorosilylmethyl)indan (10) (91% ee) and (S)-1-(2-(propenyl)phenyl)-1-trichlorosilylethanes (11a and 11b) (95% ee). On the basis of their opposite configurations at the benzylic position, a rationale for the high enantioselectivity of ligand 2g is proposed.  相似文献   

7.
Two different classes of silicone-modified ligands were prepared: nitrile derivatives, 4'-[3-(organosilyl)propoxy]biphenyl-4-carbonitrile R'3SiC3H6OC6H4C6H4CN (R'3Si- = a: Me3SiOSiMe2-, b: (Me(3)SiO)2SiMe-, c: Me3SiO(Me2SiO)3SiMe2-, d: Me3SiO(Me2SiO)25SiMe2-); and, pyridine derivatives, isonicotinic acid 2-methoxy-4-[3-(organosilyl)propyl]phenyl ester R'3SiC3H6Ph(O)MeOCOC5H4N . Compounds and were bound to Pd and Pt using ligand substitution reactions with organometallic precursors to give (R3SiC3H6OC6H4C6H4CN)2PdCl2, (R3SiC3H6OC6H4C6H4CN)2PtCl2 and (R3SiC3H6C6H3(OMe)OC(O)C5H4N)PtCl2(eta(2)-1-octene). The polydimethylsiloxane (PDMS)-supported Pt and Pd compounds and had excellent solubility in both organic solvents and polysiloxanes. All the Pt compounds exhibited good catalytic activity for hydrosilylation of vinylsilanes. The PDMS-supported Pd compound also was effective catalyst for hydrosilylation of a diene, isoprene, with 1,1,1,3,3-pentamethyldisiloxane MM(H) to produce the 1,4-adduct Me3SiOSiMe2CH2CH=CMeCH2-H as a major product.  相似文献   

8.
[reaction: see text] Reaction of enyne 1 with catecholborane catalyzed by a 1:1 mixture of [Rh(COD)(2)](+)SbF(6)(-) and (S)-BINAP (5 mol %) followed by Pd-catalyzed arylation with p-IC(6)H(4)CF(3) gave benzylidenecyclopentane 5 in 65% yield with 88% ee. Rhodium-catalyzed asymmetric cyclization/hydroboration followed either by Pd-catalyzed arylation or by oxidation was applied to the synthesis of a number of chiral, nonracemic carbocycles and heterocycles.  相似文献   

9.
During the last decade, 1-aminocyclopropanecarboxylic acid and its derivatives (ACCS) have attracted increasing attention of organic and bioorganic chemists due to their outstanding biological properties, ranging from antimicrobial, insecticidal, plant growth and fruit ripening controls, etc.1. Moreover, the three-membered carbocycle provides building blocks of unprecedented synthetic potential because it undergoes selective ring opening, ring enlargement or cycloaddition reactions2. The mo…  相似文献   

10.
Mononuclear palladium-hydroxo complexes of the type [Pd(N-N)(C6F5)(OH)][(N-N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me2bipy), or N,N,N',N'-tetramethylethylenediamine (tmeda) react with SO2(1 atm) at room temperature in alcohol (methanol, ethanol, propanol or isopropanol) to yield alkyl sulfito palladium complexes [Pd(N-N)(C6F5)(SO2OR)](R = Me, Et, Pr or iPr). Similar alkyl sulfito complexes [Pd(N-N)(C6F5)(SO2OR)](N-N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me or Et) are obtained when [Pd(N-N)(C6F5)Cl] is treated with KOH in the corresponding alcohol ROH and SO2 is bubbled through the solution. The reaction of [Pd(bipy)(C6F5)(OH)] with SO2 in tetrahydrofuran gives [Pd(N-N)(C6F5)(SO2OH)]. The X-ray diffraction study of [Pd(tmeda)(C6F5)(SO2OPr)] has established the sulfur coordination of the propyl sulfito ligand.  相似文献   

11.
Pd(OAc)(2) combined with nitrogen-containing ligands (e.g., 2,2'-bipyridine) catalyzed the cyclization of (Z)-4'-acetoxy-2'-butenyl 2-alkynoates (1) in acetic acid to afford the alpha-(Z)-acetoxyalkylidene-beta-vinyl-gamma-butyrolactones (2) with high efficiency and high stereoselectivity. The nitrogen-containing ligands, like halides, served to favor beta-heteroatom elimination over beta-hydride elimination in Pd(II)-mediated reactions. The generality of this ligand effect was probed in both stoichiometric and catalytic reactions. With these results in hand, the catalytic asymmetric protocol was achieved with high enantioselectivity (up to 92% ee) when pymox (pyridyl monooxazoline) or bisoxazoline was used. The absolute configuration of the products and the synthetic utility of this asymmetric transformation were established through the convenient synthesis of (3S)-(+)-A-factor.  相似文献   

12.
[reaction: see text] Reaction of 4,4-dicarbomethoxy-1-octene-6-yne (1) with triethylsilane and a catalytic 1:1 mixture of [Rh(COD)(2)](+) SbF(6)(-) and (R)-BIPHEMP (5 mol %) at 70 degrees C for 90 min gave (Z)-1,1-dicarbomethoxy-3-(1-triethylsilyl)ethylidene-4-methylcyclopentane (2) in 81% isolated yield with 98% de and 92% ee.  相似文献   

13.
The racemic secondary phosphine PH(Me)(Is) (1, Is = 2,4,6-(i-Pr)3C6H2) was coupled with PhI in the presence of NaOSiMe3 and the catalyst Pd((R,R)-Me-Duphos)(Ph)(I) (3) to give P(Ph)(Me)(Is) (2) in up to 78% ee. The intermediate phosphido complex Pd((R,R)-Me-Duphos)(Ph)(P(Me)(Is)) (5a,b) was observed as a mixture of diastereomers by low-temperature 31P NMR. The rate of interconversion of 5a,b by phosphorus inversion is greater than or equal to that of reductive elimination, which suggests that the enantiodetermining step occurs after Pd-P bond formation.  相似文献   

14.
Asymmetric oxyallylation reactions and ring-closing metathesis have been used to synthesize compound 3, a key advanced intermediate used in the total synthesis of eleutherobin reported by Danishefsky and co-workers. The aldehyde 6, which is readily prepared from commercially available R-(-)-carvone in six steps in 30 % overall yield on multigram quantities, was converted into the diene 5 utilizing two stereoselective titanium-mediated Hafner-Duthaler oxyallylation reactions. The reactions gave the desired products (8 and 12) in high yields (73 and 83 %, respectively) as single diastereoisomers, with the allylic alcohol already protected as the p-methoxyphenyl (PMP) ether, which previous work has demonstrated actually aids ring-closing metathesis compared to other protective groups and the corresponding free alcohol. Cyclization under forcing conditions, using Grubbs' second-generation catalyst 13, gave the ten-membered carbocycle (E)-14 in 64 % yield. This result is in sharp contrast to similar, but less functionalized, dienes, which have all undergone cyclization to give the Z stereoisomers exclusively. A detailed investigation of this unusual cyclization stereochemistry by computational methods has shown that the E isomer of the ten-membered carbocycle is indeed less thermodynamically stable than the corresponding Z isomer. In fact, the selectivity is believed to be due to the dense functionality around the ruthenacyclobutane intermediate that favors the trans-ruthenacycle, which ultimately leads to the less stable E isomer of the ten-membered carbocycle under kinetic control. During the final synthetic manipulations the double bond of enedione (E)-16 isomerized to the more thermodynamically stable enedione (Z)-4, giving access to the advanced key-intermediate 3, which was spectroscopically and analytically identical to the data reported by Danishefsky and co-workers, and thereby completing the formal synthesis of eleutherobin.  相似文献   

15.
Heating a suspension of the monomeric hydroxo palladium complex of the type [Pd(N-N)(C(6)F(5))(OH)](N-N = bipy, Me(2)bipy, phen or tmeda) in methylketone (acetone or methylisobutylketone) under reflux affords the corresponding ketonyl palladium complex [Pd(N-N)(C(6)F(5))(CH(2)COR)]. On the other hand, the reaction of the hydroxo palladium complexes [Pd(N-N)(C(6)F(5))(OH)](N-N = bipy, phen or tmeda) with diethylmalonate or malononitrile yields the C-bound enolate palladium complexes [Pd(N-N)(CHX(2))(C(6)F(5))](X = CO(2)Et or CN), and the reaction of [Pd(N-N)(C(6)F(5))(OH)](N-N = bipy or phen) with nitromethane gives the nitromethyl palladium complexes [Pd(N-N)(CH(2)NO(2))(C(6)F(5))]. [Pd(tmeda)(C(6)F(5))(OH)] catalyses the cyclotrimerization of malononitrile. The crystal structures of [Pd(bipy)(C(6)F(5))(CH(2)COMe)].1/2Me(2)CO, [Pd(tmeda)(C(6)F(5))[CH(CO(2)Et)(2)]], [Pd(tmeda)(C(6)F(5))[CH(CN)(2)]] and [Pd(tmeda)(C(6)F(5))(CH(2)NO(2))].1/2CH(2)Cl(2) have been established by X-ray diffraction.  相似文献   

16.
(S)-和(R)-盐酸氟西汀的不对称合成   总被引:2,自引:0,他引:2  
盐酸氟西汀是一种临床广泛使用的非三环类抗抑郁药, 本工作介绍了一种不对称合成(S)-和(R)-盐酸氟西汀的方法. 以自制的手性噁唑硼烷为催化剂, 将起始原料β-氯苯丙酮不对称催化氢化还原成(S)-或(R)-手性醇, 这一步的化学收率和光学收率都较高. 然后再经两步, (S)-和(R)-手性醇转化为(S)-和(R)-盐酸氟西汀. 整个工艺只需三步, 总收率为66.5%, 盐酸氟西汀对映体的ee值可达98.6%. 还考察了反应温度、溶剂、催化剂的量等因素对β-氯苯丙酮的不对称氢化还原的化学产率和光学收率的影响.  相似文献   

17.
18.
Liu C  Widenhoefer RA 《Organic letters》2007,9(10):1935-1938
Treatment of 2-allenyl indole 4 with a catalytic 1:2 mixture of [(S)-2]Au2Cl2 [(S)-2 = (S)-3,5-tBu-4-MeO-MeOBIPHEP] and AgBF4 in toluene at -10 degrees C for 17 h led to isolation of tetrahydrocarbazole 5 in 88% yield with 92% ee. The protocol was effective for the cyclization of terminally disubstituted allenes and for the formation of seven-membered rings.  相似文献   

19.
White JD  Choi Y 《Organic letters》2000,2(15):2373-2376
The Diels-Alder addition of diene 2 with benzoquinone catalyzed by (S)-BINOL-TiCl(2) produced cycloadduct 5 in >65% yield and 87% ee. The cycloadduct was transformed into (-)-ibogamine in nine steps (10% overall yield from benzoquinone). A model for the transition state leading to 5 is proposed.  相似文献   

20.
The chiral bidentate-N,N ligands, (S(a))-1, (S(a))-2, (S,S)-3 and (S,S)-4, were synthesized. They were shown to contain rigid 2-pyridinyl or 8-quinolinyl building blocks and the C(2)-symmetric chiral frameworks trans-2,5-dimethylpyrrolidinyl or (S)-(+)-2,2'-(2-azapropane-1,3-diyl)-1,1'-binaphthalene. In the (S(a))-2, and (S,S)-4 ligands pair, the 8-quinolinyl skeleton is directly bonded to the C(2)-symmetric chiral frameworks (S)-(+)-2,2'-(2-azapropane-1,3-diyl)-1,1'-binaphthalene or trans-2,5-dimethylpyrrolidinyl. This feature induces rigidity in this pair of ligands upon the N,N-framework. However, this does not occur for the (S(a))-1 and (S,S)-3 ligands, in which the presence of the -CH(2)- spacer between the frameworks bearing the nitrogen atom donors gives greater flexibility to the ligand. A further difference between the pairs of ligands is significant from the electronic properties of the chiral framework N-donor atom. The coordinating properties and the specific steric structural features of the (S(a))-1, (S(a))-2, (S,S)-3, and (S,S)-4 ligands are explained by their reactions with the [Pd(PhCN)(2)Cl(2)] and [Pd(eta(3)-PhCHCHCHPh)(mu-Cl)](2) substrates, in which the reported ligands form chelate complexes, with the exception of (S(a))-2, which failed to react with [Pd(eta(3)-PhCHCHCHPh)(mu-Cl)](2). The ligands were used in the palladium-allyl catalyzed substitution reaction of 1,3-diphenylallyl acetate with dimethylmalonate, with the best result being obtained using the (S(a))-1 ligand, giving the substitution product 2-(1,3-diphenylallyl)dimethylmalonate with an enantiomeric excess of 82% in the S form and a yield of 96%. The work demonstrates that in the presence of a steric ligand control, the electronic properties of the ligand donor atoms play a role though not significant in determining the enantioselectivity of palladium(II) catalyzed allylic substitution reactions. The results of the catalytic reaction do not provide a convincing explanation considering the coordinated chiral ligand features, as rigidity or flexibility and electronic properties of the N-donor atoms. A rationalization of the results is proposed on the basis of NMR studies and DFT calculation on the cationic complexes [Pd(eta(3)-PhCHCHCHPh)(N-N*)]CF(3)SO(3), (N-N* = (S(a))-1, 9; (S,S)-3, 10; (S,S)-4, 11).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号