首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.  相似文献   

2.
We present for the first time a Nd:YAG laser emitting at 1319 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 809 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1319 nm intracavity pumped at 946 nm. Intracavity sumfrequency mixing at 946 and 1319 nm was then realized in a LBO crystal to reach the yellow range. We obtained a continuous-wave output power of 158 mW at 551 nm with a pump laser diode emitting 18.7 W at 809 nm.  相似文献   

3.
We report the intracavity-frequency-doubling of a 946 nm Nd:YAG laser with a CMTC crystal at room temperature. A cw output power of 1.64 mW of blue light at 473 nm is obtained. To our knowledge, this is the first time that CMTC crystal has been used to frequency double a 946 nm Nd:YAG laser.  相似文献   

4.
We present for the first time a Nd:YAG laser emitting at 1064 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 885 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1064 nm intracavity pumped at 946 nm. We achieved an output power of 7.97 W at 1064 nm for an absorbed pump power at 946 nm of 9.55 W, corresponding to an optical efficiency of 83.4%. The beam quality M2 quality factor is about 1.1 at the maximum output power.  相似文献   

5.
We report a blue laser at 473 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 946 nm Nd:YAG laser under in-band diode pumping at 869 nm. An BiBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 8.6 W, as high as 721 mW of CW output power at 473 nm is achieved. The optical-to-optical conversion efficiency is up to 8.4%, and the fluctuation of the blue output power was better than 3.5% in the given 30 min.  相似文献   

6.
A continuous-wave high-power Nd:YAG laser operating on the 4F3/24I9/2 transition at 946 nm and intracavity frequency-doubled to 473 nm by a KNbO3 nonlinear crystal at room temperature is reported. The Nd:YAG laser outputs a randomly polarized beam of 3.8 W maximum power (38% optical-to-optical efficiency and 44% slope efficiency with respect to the absorbed pump power) at the 946 nm fundamental wavelength. Intracavity frequency-doubling with a 2.0-mm thick KNbO3 crystal in a linear resonator yielded 159-mW single-ended blue-output with 4.8% optical-to-optical conversion efficiency versus the absorbed pump power. The 473-nm maximum power of 418 mW with 11.6% optical-to-optical conversion efficiency in absorbed power was obtained from a V-type resonator; the overall optical-to-optical conversion efficiency was 6.7%, while the conversion of the available infrared power reached 50%.  相似文献   

7.
采用解析法对Nd:YAG单晶光纤激光器热效应相关的光纤温度场分布进行研究。建立了Nd:YAG单晶光纤热模型,在单晶光纤所满足的边界条件下通过解析求解热传导方程,得到在高功率808 nm泵浦光抽运下产生946 nm激光的单晶光纤温度场分布,并与传统Nd∶YAG激光晶体的温度场进行比较,然后分别与同泵浦条件下的有限元数值方法的分析结果进行研究对比,最后分析泵浦光参数、单晶光纤参数等对温度场的影响。结果表明,功率为86 W的泵浦光入射至单晶光纤端面的最高温升仅为30.98℃,明显优于同泵浦条件下传统Nd∶YAG晶体的端面温升结果94.37℃,与有限元数值法得到的Nd:YAG单晶光纤19℃温升结果相比,该解析法结果更接近于实验的测量值31℃,能够更精确描述晶体光纤温度场。本文可对单晶光纤激光器热效应的精确研究提供一定参考,进而有利于提高单晶光纤激光器的性能。  相似文献   

8.
We report for the first time a coherent radiation at 554.7 nm by intracavity sum-frequency generation of 946 nm Nd:YAG laser and 1341 nm Nd:YAP laser. Yellow-green laser is obtained by using a doubly folded cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 36.1 W (17.8 W pump power for 1341 nm Nd:YAP laser and 18.3 W pump power for 946 nm Nd:YAG laser), TEM00 mode yellow-green laser at 554.7 nm of 1.43 W is obtained.  相似文献   

9.
Wu  Y.  Zhang  X. H.  Sun  G. C. 《Laser Physics》2011,21(6):1074-1077
We report for the first time a coherent radiation at 555 nm by intracavity sum-frequency generation of 946 nm Nd:YAG laser and 1343 nm Nd:LuVO4 laser. Yellow-green laser is obtained by using a doubly folded cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 31.9 W (13.7 W pump power for 1343 nm Nd:LuVO4 laser and 18.2 W pump power for 946 nm Nd:YAG laser), TEM00 mode yellow-green laser at 555 nm of 2.35 W is obtained.  相似文献   

10.
Zhou R  Li E  Li H  Wang P  Yao J 《Optics letters》2006,31(12):1869-1871
A high-power continuous-wave (cw) Nd:YAG laser operating at 946 nm by utilizing a quasi-three-level transition is reported. The laser consists of a composite Nd:YAG rod end pumped by a fiber-coupled diode laser and a simple plane-concave cavity. At an incident pump power of 40.2 W, a maximum cw output of 15.2 W at 946 nm is obtained, achieving a slope efficiency of 45%. To the best of our knowledge, this is the highest output at 946 nm ever generated by diode-pumped Nd:YAG lasers. In addition, at an incident pump power of 15.2 W, a 1.25 W blue output at 473 nm is achieved with a simple compact three-element cavity and a type-I lithium triborate (LiB(3)O(5)) crystal as a frequency doubler.  相似文献   

11.
A dual-wavelength continuous-wave (CW) diode-pumped Nd:YAG laser that generates simultaneous laser action at the wavelengths 946 nm and 1319 nm is demonstrated. A total yellow-green output power of 2.33 W for the dual-wavelength was achieved at the incident pump power of 18.2 W. Furthermore, intracavity sum-frequency mixing at 946 and 1319 nm was then realized in a LBO crystal to reach the yellow-green range. We obtained a total CW output power of 340 mW at 551 nm.  相似文献   

12.
Garashi A  Arie A  Skliar A  Rosenman G 《Optics letters》1998,23(22):1739-1741
We report what is to our knowledge the first demonstration of a continuous-wave optical parametric oscillator (OPO) based on periodically poled KTiOPO(4) . The 10-mm-long flux-grown crystal had a quasi-phase-matched period of 9mum . The pump source was a miniature frequency-doubled Nd:YAG laser, and the threshold power of this doubly resonant device was 51 mW. The OPO was operated near room temperature. The signal and the idler wavelengths could be tuned in the range 1037-1093 nm by variation of the crystal temperature (32-38 degrees C) and the cavity length. Unlike in other nonlinear crystals, green-induced infrared absorption was not observed up to the highest pumping intensity of approximately 4.5kW/cm(2) .  相似文献   

13.
采用熔盐法从K2 WO4助熔剂体系生长出尺寸为 4 5mm的Nd3 :Er3 :KY(WO4) 2 透明晶体。从晶体中切割出Ф3× 11 9mm的激光器件 ,测量了晶体的紫外 -近红外的吸收光谱 ,从吸收光谱图上可以看到 ,晶体存在着 974 88nm ;80 1 0 (798 12 ,80 3 95 )nm ;74 8 5 (75 3 5 ,74 3 4 9)nm ;6 5 3 6 1nm ;5 86 6 5nm ;5 18 6(5 4 5 0 3,5 2 1 32 ,4 89 35 )nm ;4 5 2 80nm ;4 0 7 81nm ;36 7 2 2 (377 2 4 ,36 6 4 ,35 8 0 2 )nm九个吸收峰带 ,对各个吸收峰带按照Er3 和Nd3 离子的能级跃迁进行了归属。同时采用Edinburgh InstrumentF92 0荧光光谱仪在室温下对晶体进行了荧光测试研究。研究结果表明 ,共掺Nd3 离子可以增强Er3 :KY(WO4) 2 对半导体激光器泵浦源 (80 0nm)的吸收。  相似文献   

14.
报道了全固态连续波571.6 nm黄光激光器.黄激光是分别由两片Nd∶YAG的1 444 nm和946 nm谱线非线性和频产生,两条谱线在各自晶体对应能级跃迁分别为4F3/2-4I15/2和4F3/2-4I9/2.实验中采用复合腔结构,利用RTP晶体II类临界相位进行内腔和频,当注入到两片Nd∶YAG晶体的抽运功率分别为25 W和14.8 W时,获得562 mW的连续波571.6 nm黄激光输出,4 h功率稳定度优于±2.9%.  相似文献   

15.
刘杨  刘兆军  丛振华  徐晓东  徐军  门少杰  夏金宝  张飒飒 《物理学报》2015,64(17):174203-174203
文章报道了一个二极管激光抽运的1123 nm被动调Q激光器. 激光晶体为混晶Nd:LuYAG, 饱和吸收体选为Cr4+:YAG晶体. 在连续运转情况下, 最高输出功率为2.77 W, 对应的光-光转换效率为29.53%. 调Q运转时, 在9.38 W吸收抽运功率下, 最高输出功率为0.94 W. 脉冲宽度整体在105 ns左右. 在最高吸收抽运功率下, 1123 nm激光的输出重复频率为9.40 kHz, 对应的单脉冲能量可达100 μJ, 高于目前报道的单晶Nd:YAG 1123 nm单脉冲能量, 证明其在能量存储方面较单晶Nd:YAG更具优势. 另外, 据我们所知, 这是关于混晶Nd:LuYAG 1123 nm输出的首次报道.  相似文献   

16.
An efficient continuous-wave (CW) simultaneous dual-wavelength lasing (SDWL) of an LD end-pumped Nd:YAG laser utilizing a quasi-three-level transition at 946 nm and a four-level transition at 1064 nm is reported. A theoretical model has been introduced to determine the threshold conditions for SDWL. The temperature distributions of a Nd:YAG crystal under different pump powers have been analyzed. In the experiments, a CW SDWL output power of 5.12 W at a temperature of 273 K has been achieved with a pump power of 17 W, giving a slope efficiency of 16.36%.  相似文献   

17.
基于非线性光学效应,采用差频发生技术(Difference frequency generation)和准相位匹配技术(Quasi-phase matching),在周期性极化的铌酸锂晶体(PPLN)中产生了中红外的可调谐激光源。泵浦光是一个功率为1 W、调谐范围在770到870 nm之间的连续可调谐钛宝石激光器。信号光是一个功率为1 W、单频连续的Nd∶YAG激光器。当晶体的光栅周期为20 μm、温度调谐范围内在室温到200 ℃之间时,能够产生2.8 μm附近的、功率约为1~2 μW的差频光源。基于这个光源,采用直接吸收光谱方法测量了实验室大气中的水汽(001←000)吸收带的吸收光谱。依据大气中水汽分子在8.5 cm的吸收光程条件下的吸收光谱,成功地测量得到了大气中的水汽浓度。  相似文献   

18.
LD端面泵浦Nd:YAG/BIBO单模蓝光激光器   总被引:1,自引:1,他引:0  
从理论上分析了准三能级系统946 nmNd:YAG全固态激光器运转的条件,并比较了几种不同的倍频晶体的特性,给出内腔倍频获得473 nm蓝光发射的方案。用波长808 nm、输出功率为2.2 W的半导体激光器泵浦Nd:YAG,采用内腔倍频的方法,在一定的温度下,用Ⅰ类临界相位匹配B IBO晶体倍频获得了473 nm 26.5 mW的单模连续蓝色激光输出,功率波动小于±5%。  相似文献   

19.
We report a green laser at 531 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1062 nm Nd:GAGG laser under in-band diode pumping at 808 nm. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.5 W, as high as 933 mW of cw output power at 531 nm is achieved. The fluctuation of the green output power was better than 3.5% in the given 4 h.  相似文献   

20.
A power-scaled laser operation of Pr:YLi F4(YLF)crystal at 720.9 nm pumped by a 443.6 nm laser diode(LD)module was demonstrated.The 20 W module was used to pump the Pr:YLF crystal,and a maximum output power of 3.03 W with slope efficiency of 30.04%was obtained.In addition,a 5 W blue LD was also used to pump the Pr:YLF laser,and a maximum output power of 0.72 W was obtained at room temperature.The output power was limited by the wavelength mismatch between the single-emitter LD and the absorption peak of the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号