首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
The results of investigation of high harmonics of radiation of a Ti:sapphire laser propagating through a laser plasma generated on the surface of different targets are presented. For most of the targets, the intensity distribution of the high harmonics generated is found to form a plateaulike pattern similar to that observed in the case of gas jets. The generation of high harmonics (up to the 65th harmonic, λ = 12.24 nm) is caused by the interaction of femtosecond laser radiation with ions. The conversion efficiency in the plateau region varies from 10?7 to 8 × 10?5 depending on the target. The main restriction on the conversion efficiency and the peak intensity of the harmonics generated is caused by the self-defocusing of the femtosecond radiation due to free charge carriers formed as a result of tunnel ionization.  相似文献   

2.
The generation of lower (third) and higher harmonics of femtosecond laser radiation in plasmas produced by laser ablation of different targets with a small atomic number Z (B, Be, Li) has been investigated. The high (10−3) efficiency of third-harmonic generation was observed in plasma produced on the boron surface. Efficient third-harmonic generation was also observed in beryllium plasma using femtosecond pulses of Ti:sapphire laser radiation (λ = 790 nm) and its second harmonic (395 nm). We could tune the higher harmonics generation spectrum by tuning the crystal converter when using 395-nm radiation to be converted. It is shown that, in plasmas formed on targets with small Z, the conversion efficiency and limiting generated harmonic order depend on the delay between the ablation pulse and the pulse to be converted.  相似文献   

3.
We demonstrate the generation of high harmonics (up to the 65th order, λ=12.24 nm) of a Ti:sapphire laser radiation after the propagation of femtosecond laser pulses through the low-excited plasma produced by a picosecond prepulse radiation on the surface of different targets. High-order harmonics generated from the surface plasma of most targets showed a plateau pattern. It is assumed that the harmonic generation in these conditions occurs due to the interaction of the femtosecond pulses with the ions. The conversion efficiencies at the plateau region were varied between 1×10-7 to 8×10-6, depending on the target. The main contribution to the limitation of harmonic generation efficiency and cutoff energy was attributed to the self-defocusing of main pulse. A considerable restriction of the 27th harmonic generation was observed at different focusing conditions in the case of chromium plasma. Our observation of the resonance-induced enhancement of a single harmonic (λ=61.2 nm) at a plateau region with the efficiency of 8×10-5 in the case of In plasma can offer some expectation that analogous processes can be realized in other plasma samples in the shorter wavelength range where the highest harmonics were achieved. PACS 42.65.Ky; 52.35.Mw; 52.38.-r  相似文献   

4.
The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 1014 W/cm2. It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2–3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed.  相似文献   

5.
We analyze the interference between two processes of higher harmonic generation (HHG) in plasma containing mixtures of different materials (silver and gold nanoparticles, as well as graphite and boron). We find that, for mixtures and individual ingredients, the limiting orders of generated harmonics of laser radiation approximately coincide with one another. At the same time, for plasma torches formed by the ablation of mixtures of materials, the HHG efficiency is considerably reduced compared to the case of the frequency transformation of laser radiation in individual ingredients of these mixtures as a result of destructive interference in the former case. We demonstrate a considerable spectral broadening of harmonics generated in laser plasma with pulses passed through filaments formed in air. In this case, the HHG efficiency increases fourfold (from 3 × 10−6 to 1.2 × 10−5) compared to the case of radiation free of phase and frequency modulation. The generation of harmonics is also observed upon the passage of 120-fs laser pulses through plasma containing fullerenes. In this case, the limiting value of generated harmonics achieves the 33rd order. The efficiency of harmonics in fullerene plasma considerably exceeds a similar process in silver plasma.  相似文献   

6.
We present experimental results in which a second-order effect, namely two-photon ionization of atomic He induced by a superposition of harmonics, is observed. The harmonics are generated in a Xe gas-jet using a 790-nm 10-Hz femtosecond Ti:sapphire laser and are subsequently focused into a He gas-jet with a Kirkpatrick–Baez arrangement. The superposition is formed by using a thin In filter and it comprises the 7th to 13th harmonics. Solving the time-dependent Schrödinger equation for He in a polychromatic laser field, the He + ion yield is calculated as a function of the total XUV intensity. Using the calculated yield and taking into account the focusing and transmission properties of the arrangement, the number of He + ions produced per laser pulse is estimated and is found to be in reasonable agreement with its measured value. The total number of ions produced non-resonantly follows a nearly quadratic dependence on the harmonic intensity, thus establishing the feasibility of a second-order auto-correlation measurement of the superposition of harmonics, i.e., of a direct temporal characterization of attosecond pulse trains.  相似文献   

7.
Spectral, temporal, and spatial characteristics of harmonics generated at solid surfaces interacting with laser radiation (t=27 ps and I≤1.5×1015 W/cm2) are studied. Spectral broadening and a long-wavelength shift of the second harmonic were observed for laser radiation intensities exceeding 5×1014 W/cm2. Results of the study of the conversion of spectral parameters and polarization features for the generation of second and third harmonics are presented. Conversion efficiencies for the second, third, and fourth harmonic are 2×10?8, 10?10, and 5×10?12, respectively. The results obtained are compared with data of analogous studies utilizing shorter pulses.  相似文献   

8.
The results of enhanced harmonic generation in fullerene-containing plasma plumes using laser radiation of different wavelengths, pulse durations, and phase modulation are presented. Odd and even harmonics up to the 29th order of 800 nm radiation have been extended in the case of two-color orthogonal polarization pump of C60-containing plasma plumes. The conversion efficiency for the odd and even harmonics in the vicinity of SPR of the C60-containing plasma (40–70 nm) was estimated to be in the range of 10−4.  相似文献   

9.
V. P. Silin 《JETP Letters》1998,67(5):329-333
The polarization of the high harmonics generated in plasmas by the bremsstrahlung of electrons oscillating under the influence of high-power plasma-heating electromagnetic radiation is described on the basis of a simple model of a cold plasma. It is shown that when the polarization of the heating radiation differs from plane polarization by a small but finite amount, the high harmonics are generated with almost perpendicular polarization, and the degree of circular polarization of the harmonics increases with the number of the harmonic. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 5, 313–316 (10 March 1998)  相似文献   

10.
The combination of high-field physics with nano-plasmonics has proven to be feasible in producing high harmonics of intense laser radiation from noble gases, assisted by the field-enhancement effect in the proximity of metallic nano-antennas. However, the intensity region where harmonics can be generated without irreversible damage to these delicate structures is rather narrow. We explore the damage threshold of gold targets that exhibit regular structures on a nanoscopic scale, either explicitly resonant to the used laser frequency, or off-resonance. These are compared to values for bulk material in order to gain insight into the role of plasmonic resonances in the response of solid targets on intense laser radiation. We find that the presence of such a resonance lowers the threshold fluence (J/cm2) where global structural damage sets in by about an order of magnitude. Statistical deviations either in local pulse energy of the damage inducing laser radiation or in the exact resonance behaviour of singular structures prove to be limited. These results should serve as a guideline for future experiments working near the damage threshold of more sophisticated antenna designs.  相似文献   

11.
The effects of the interaction of an intense femtosecond laser pulse with large atomic clusters are considered. The pulse intensity is of the order of 1018 W cm?2. New effects appear when the magnetic component of the Lorentz force is taken into account. The second harmonic of laser radiation is generated. The second harmonic generation (SHG) efficiency is proportional to the square of the number of atoms in a cluster and the square of the laser radiation intensity. The resonance increase in the SHG efficiency at the Mie frequencies (both at the second harmonic frequency and fundamental frequency) proved to be insignificant because of the fast passage through the resonance during cluster expansion. The mechanisms of the expansion and accumulation of energy by electrons and ions in the cluster are discussed in detail. The energy accumulation by electrons mainly occurs due to stimulated inverse bremsstrahlung upon elastic reflection of the electrons from the cluster surface. The equations describing the cluster expansion take into account both the hydrodynamic pressure of heated electrons and the Coulomb explosion of the ionized cluster caused by outer shell ionization. It is assumed that both inner shell and outer shell ionization is described by the over barrier mechanism. It is shown that atomic clusters are more attractive for the generation of even harmonics than compared to solid and gas targets.  相似文献   

12.
By focusing an intense short-pulse laser into a rare gas jet, high-order harmonics of the laser frequency are generated. Considerable progress have been made in the last few years, with the observation of harmonic orders higher than 200, extending the emission down to 3 nm. Besides its fundamental interest, this XUV emission represents a new source with unique properties of coherence and ultrashort (femtosecond) duration. A growing number of applications are reported, ranging from atomic and molecular spectroscopy to solid-state and plasma physics.  相似文献   

13.
High harmonic generation is compared in the dependence on the ellipticity of the fundamental laser radiation for an atomic and a molecular system. In particular argon and nitrogen are compared employing molecular beams and intense ( 3×1014 W/cm2) and ultrashort (80 fs) 800 nm laser pulses. It turns out that for all the harmonics under investigation (H5, H13 and H21) the harmonic yield decreases slower with the ellipticity for the molecule than for the atom. This indicates differences in atomic and molecular high harmonic generation. Received 24 April 2002 Published online 24 September 2002  相似文献   

14.
R. A. Ganeev 《Laser Physics》2008,18(9):1009-1015
Nanoparticle-containing media can be used for the efficient high-order harmonic generation (HHG) of laser radiation in the extreme ultraviolet range. We review the results of recent studies of the HHG in laser-produced plasmas containing Ag, Au, Pd, Pt, Ru, GaN, BaTiO3, and SrTiO3 nanoparticles. The harmonics of femtosecond radiation up to the 55th order were achieved using the nanoparticle-containing plumes, when the femtosecond radiation propagated through the preformed plasma. These results are compared with the high-order harmonics generated from the plasma produced on the surface of bulk targets at different delays between the subnanosecond heating prepulse and femtosecond pulse. We discuss a six-fold enhancement of the HHG yield, which was achieved in the case of nanoparticle-containing plumes with regard to the monoparticle-containing plasmas.  相似文献   

15.
Harmonics up to the 18th order are generated from solid targets by focusing 2 mJ, 50 fs pulses at 800 nm to a spot size of 1.7 μm (FWHM). To our knowledge, this is the first demonstration of high-harmonic generation with a very short focal length paraboloid (f/1.4) and kilohertz laser system. The harmonics have a low divergence (<4°) compared to the driving beam and conversion efficiencies (>10(-7) per harmonic) comparable to gas harmonics. No contrast enhancement techniques are employed, and the system is capable of operating at 500 Hz.  相似文献   

16.
Abstract

Ultraviolet light has been generated from a Rhodamine 60 organic dye laser by frequency doubling with a KDP crystal. The second harmonic was tuned from 2900Å to 3000Å with peak powers of 40 watts.

Organic dye lasers have now been reported with output wave-lengths extending throughout the visible and near infrared1-12. The tunability4,6,13 and output energies now available in the visible protion of the spectrum suggest frequency doubling as a means of obtaining a tunable source of ultraviolet light. We wish to report the observation of tunable second harmonic radiation centered at 2950Å generated from the laser output of a 10?4 molar solution of Rhodamine 6G dissolved in ethyl alcohol.  相似文献   

17.
We have investigated the use of sub-10-fs near-infrared laser pulses to generate high-order harmonic radiation efficiently in the wavelength region between 30 to 10 nm. The ultrashort rise time of the driver pulses allows harmonics to be produced at low ionization levels and hence to grow coherently over propagation lengths becoming comparable to the XUV absorption lengths in the noble gas medium. As a result, absorption-limited harmonic generation has been extended to the 10-nm range for the first time. Harmonic conversion efficiencies of (3-4)᎒ъ in the range of 10-13 nm in neon and some two orders of magnitude higher at around 30 nm in argon have been obtained in simple gas tube targets under these conditions. Preliminary focusing tests with 13-nm harmonic radiation have been carried out with a specially designed zoneplate and a spherical Mo/Si multilayer mirror and have resulted in spot sizes of about 2 microns. Our experiments aim at paving the way to nonlinear optics in the soft-X-ray regime.  相似文献   

18.
A new method of harmonics rejection based on X‐ray refractive optics has been proposed. Taking into account the fact that the focal distance of the refractive lens is energy‐dependent, the use of an off‐axis illumination of the lens immediately leads to spatial separation of the energy spectrum by focusing the fundamental harmonic at the focal point and suppressing the unfocused high‐energy radiation with a screen absorber or slit. The experiment was performed at the ESRF ID06 beamline in the in‐line geometry using an X‐ray transfocator with compound refractive lenses. Using this technique the presence of the third harmonic has been reduced to 10?3. In total, our method enabled suppression of all higher‐order harmonics to five orders of magnitude using monochromator detuning. The method is well suited to third‐generation synchrotron radiation sources and is very promising for the future ultimate storage rings.  相似文献   

19.
Generation of third harmonic of CO2 laser radiation has been obtained in a type-II, ϑ=57° cut 9 mm thick AgGaSe2 crystal for the first time by sum-frequency-mixing of the fundamental with its second harmonic, the latter being obtained using another type-I, ϑ=55° cut 11 mm thick AgGaSe2 crystal. The energy conversion efficiencies obtained for second harmonic and third harmonic generations are 6.3% and 2.4% respectively with the input fundamental pump power density of 5.9 MW/cm2 only. The wavelength of the fundamental CO2 laser radiation used for the generation of harmonics is 10.6 μm, P(20) line. A compact TEA CO2 laser source has been built in the laboratory.  相似文献   

20.
Electron (z)‐nuclear (R) dynamics in the molecular high‐order harmonic generation (MHHG) from H2+ driven by the plasmonic nonhomogeneous field, generated by the surface plasmon polaritons in the bowtie‐shaped nanostructure, have been theoretically investigated through solving the two dimensional time‐dependent Schrödinger equation with the Non‐Bohn‐Oppenheimer approximation. It is found that (i) due to the plasmonic enhancement of the laser intensity, the harmonic cutoff can be extended when the spatial position of H2+ is away from the gap center of the nanostructure. However, due to the limit of the gap size, the threshold value of the harmonic cutoff can be obtained at a given position of H2+. (ii) Due to the asymmetric enhancement of the laser intensity in space, the extended higher harmonics are respectively from E(t) > 0 a.u. or E(t) < 0 a.u. for the cases of the positive and the negative spatial position of H2+. As a result, the intensities of the extended higher harmonics are different and can be controlled by changing the carrier‐envelope phase and the pulse duration of the laser field. (iii) In the few‐cycle pulse duration, the MHHG mainly comes from the multi‐photon resonance ionization (MPRI), while as the pulse duration increases, the MPRI, the charge‐resonance enhanced ionization (CREI) and even the dissociative ionization (DI) are contributed to the MHHG. Moreover, as the spatial position of H2+ moves, the contributions of the MHHG from the MPRI, the CERI and the DI can be controlled. (iv) The contributions of the MHHG from the two‐H nuclei have been investigated and found that when E(t) > 0 a.u., the intensities of the harmonics from the negative‐H is higher than those from the positive‐H; while when E(t) < 0 a.u., the intensities of the harmonics from the positive‐H plays the main role in the MHHG. Moreover, the multi‐minima, caused by the two‐center interference can also be found. (v) Finally, by superposing a properly selected harmonics, a single isolated attosecond pulse (SIAP) with the full width at half maximum (FWHM) of 34 as can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号