首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
Functionsp(x) andq(x) for which the Dirac operator $$Dy = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ \end{array} } & {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \\ \end{array} } \right)\frac{{dy}}{{dx}} + \left( {\begin{array}{*{20}c} {p(x) q(x)} \\ {q(x) - p(x)} \\ \end{array} } \right)y = \lambda y, y = \left( {\begin{array}{*{20}c} {y_1 } \\ {y_2 } \\ \end{array} } \right), y_1 (0) = 0,$$ has a countable number of eigenvalues in the continuous spectrum are constructed.  相似文献   

2.
Let {b k (n)} n=0 be the Bell numbers of order k. It is proved that the sequence {b k (n)/n!} n=0 is log-concave and the sequence {b k (n)} n=0 is log-convex, or equivalently, the following inequalities hold for all n?0, $$1 \leqslant \frac{{b_k (n + 2)b_k (n)}}{{b_k (n + 1)^2 }} \leqslant \frac{{n + 2}}{{n + 1}}$$ . Let {α(n)} n=0 be a sequence of positive numbers with α(0)=1. We show that if {α(n)} n=0 is log-convex, then α(n)α(m)?α(n+m), ?n,m?0. On the other hand, if {α(n)/n!} n=0 is log-concave, then $$\alpha (n + m) \leqslant \left( {\begin{array}{*{20}c} {n + m} \\ n \\ \end{array} } \right)\alpha (n)\alpha (m),{\text{ }}\forall n,m \geqslant 0$$ . In particular, we have the following inequalities for the Bell numbers $$b_k (n)b_k (m) \leqslant b_k (n + m) \leqslant \left( {\begin{array}{*{20}c} {n + m} \\ n \\ \end{array} } \right)b_k (n)b_k (m),{\text{ }}\forall n,m \geqslant 0$$ . Then we apply these results to characterization theorems for CKS-space in white noise distribution theory.  相似文献   

3.
Using Hilbert’s inequality, we give a new asymptotic formula (uniform inq andT) for $$\mathop \Sigma \limits_{\begin{array}{*{20}c} {\chi (mod q)} \hfill \\ {\chi primitive} \hfill \\ \end{array} } \smallint _T^{2T} |L(\tfrac{1}{2} + it,\chi )^4 |dt$$   相似文献   

4.
Let (Ω, ?,P) be the infinite product of identical copies of the unit interval probability space. For a Lebesgue measurable subsetI of the unit interval, let \(A(N,I,\omega ) = \# \left\{ {n \leqslant N|\omega _n \varepsilon I} \right\}\) , where ω=(ω12,...). For integersm>1, and 0≤r<m, define $$\varepsilon (k,r,m,I,\omega ) = \left\{ {\begin{array}{*{20}c} {1\,if\,A(k,I,\omega ) \equiv r(\bmod m)} \\ {0\,otherwise} \\ \end{array} } \right.$$ and $$\eta (k,m,I,\omega ) = \left\{ {\begin{array}{*{20}c} {1\,if\,(A(k,I,\omega ),m) \equiv 1} \\ {0\,otherwise.} \\ \end{array} } \right.$$ A theorem ofK. L. Chung yields an iterated logarithm law and a central limit theorem for sums of the variables ε(k) and η(k).  相似文献   

5.
We consider the second-order matrix differential operator $$N = \left( {\begin{array}{*{20}c} { - \frac{d}{{dx}}\left( {p_0 \frac{d}{{dx}}} \right) + p_1 } \\ r \\ \end{array} \begin{array}{*{20}c} r \\ { - \frac{d}{{dx}}\left( {q_0 \frac{d}{{dx}}} \right) + q_1 } \\ \end{array} } \right)$$ determined by the expression Nφ, [0 ?x < ∞), where \(\phi = \left( {\begin{array}{*{20}c} U \\ V \\ \end{array} } \right)\) . It has been proved that if p0, q0, p1, q1,r satisfy certain conditions, then N is in the limit point case at ∞. It has been also shown that certain differential operators in the Hilbert space L2 of vectors, generated by the operator N, are symmetric and self-adjoint.  相似文献   

6.
Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows $$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$ with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\) . In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that $$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$ holds for all non-negative integers n and l.  相似文献   

7.
It is known that if there exist perfecte-codes or tight 2e-designs in a Hamming schemeH(n, q), then all the zeros of the Lloyd polynomial $$F_e \left( x \right) = \sum\limits_{i = 0}^e {\left( { - q} \right)^i \left( {q - 1} \right)^{e - i} } \left( {\begin{array}{*{20}c} {n - i - 1} \\ {e - i} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {x - 1} \\ i \\ \end{array} } \right)$$ are integers in the interval [1,n]. With some results of Best, we show that ife ≥ 3,n ≥ e + 1, andq ≥ 3, thenF e (x) has a nonintegral zero. Therefore there exist no nontrivial perfecte-codes and tight 2e-designs inH(n,q) ife ≥ 3 andq ≥ 3.  相似文献   

8.
The following matrices are considered $$A_k = \left( {\begin{array}{*{20}c} k \\ 1 \\ \end{array} \begin{array}{*{20}c} 2 \\ k \\ \end{array} } \right), B_k \left( {\begin{array}{*{20}c} {k - 1} \\ 1 \\ \end{array} \begin{array}{*{20}c} 1 \\ {k + 1} \\ \end{array} } \right),k \in \mathbb{N},$$ which are strong shift equivalent in the sense ofWilliams [7]. In case \(k + \sqrt 2 \) is a prime number of the algebraic field \(\mathbb{Q}(\sqrt 2 )\) matrices are defined which determine the possible choices of rank two matrices connectingA k andB k in the sense of strong shift equivalence. A complete list of all these matrices is given.  相似文献   

9.
P. C. Fishburn 《Order》1986,3(2):159-167
Let ρ=P(12)/P(12|13), where P(ij) is the probability that i precedes j in a randomly chosen linear extension of a partially ordered set ({1,2,...,n}, ≤) in which points 1, 2 and 3 are mutually incomparable. A previous paper by the author (Order 1, 127 (1984)) proved that ρ≤1. The present paper considers the maximization of ρ for each n≥3. It shows that, with \(\alpha _n = \left\lfloor {(n + 3)/2} \right\rfloor \) , the maximum ρ is at least $$\left[ {\alpha _n \left( {\begin{array}{*{20}c} n \\ {\alpha _n } \\ \end{array} } \right) - n} \right]/\left[ {\alpha _n \left( {\begin{array}{*{20}c} n \\ {\alpha _n } \\ \end{array} } \right) - \alpha _n } \right]$$ . Evidence that this value cannot be exceeded is given. It is also proved that the smallest possible value of P(231)+P(321) is $$1/\left( {\begin{array}{*{20}c} n \\ {\left\lfloor {\left( {n + 1} \right)/2} \right\rfloor } \\ \end{array} } \right)$$ .  相似文献   

10.
Two-variable functions f(x, y) from the class L 2 = L 2((a, b) × (c, d); p(x)q(y)) with the weight p(x)q(y) and the norm $$\left\| f \right\| = \sqrt {\int\limits_a^b {\int\limits_c^d {p(x)q(x)f^2 (x,y)dxdy} } }$$ are approximated by an orthonormal system of orthogonal P n (x)Q n (y), n, m = 0, 1, ..., with weights p(x) and q(y). Let $$E_N (f) = \mathop {\inf }\limits_{P_N } \left\| {f - P_N } \right\|$$ denote the best approximation of f ?? L 2 by algebraic polynomials of the form $$\begin{array}{*{20}c} {P_N (x,y) = \sum\limits_{0 < n,m < N} {a_{m,n} x^n y^m ,} } \\ {P_1 (x,y) = const.} \\ \end{array}$$ . Consider a double Fourier series of f ?? L 2 in the polynomials P n (x)Q m (y), n, m = 0, 1, ..., and its ??hyperbolic?? partial sums $$\begin{array}{*{20}c} {S_1 (f;x,y) = c_{0,0} (f)P_o (x)Q_o (y),} \\ {S_N (f;x,y) = \sum\limits_{0 < n,m < N} {c_{n,m} (f)P_n (x)Q_m (y), N = 2,3, \ldots .} } \\ \end{array}$$ A generalized shift operator Fh and a kth-order generalized modulus of continuity ?? k (A, h) of a function f ?? L 2 are used to prove the following sharp estimate for the convergence rate of the approximation: $\begin{gathered} E_N (f) \leqslant (1 - (1 - h)^{2\sqrt N } )^{ - k} \Omega _k (f;h),h \in (0,1), \hfill \\ N = 4,5,...;k = 1,2,... \hfill \\ \end{gathered} $ . Moreover, for every fixed N = 4, 9, 16, ..., the constant on the right-hand side of this inequality is cannot be reduced.  相似文献   

11.
Enumerating rooted simple planar maps   总被引:1,自引:0,他引:1  
The main purpose of this paper is to find the number of combinatorially distinct rooted simpleplanar maps,i.e.,maps having no loops and no multi-edges,with the edge number given.We haveobtained the following results.1.The number of rooted boundary loopless planar [m,2]-maps.i.e.,maps in which there areno loops on the boundaries of the outer faces,and the edge number is m,the number of edges on theouter face boundaries is 2,is(?)for m≥1.G_0~N=0.2.The number of rooted loopless planar [m,2]-maps is(?)3.The number of rooted simple planar maps with m edges H_m~s satisfies the following recursiveformula:(?)where H_m~(NL) is the number of rooted loopless planar maps with m edges given in [2].4.In addition,γ(i,m),i≥1,are determined by(?)for m≥i.γ(i,j)=0,when i>j.  相似文献   

12.
A Generalized Room Square (GRS) of ordern and degreek is an \(\left( {\begin{array}{*{20}c} {n - 1} \\ {k - 1} \\ \end{array} } \right) \times \left( {\begin{array}{*{20}c} {n - 1} \\ {k - 1} \\ \end{array} } \right)\) array of which each cell is either empty or contains an unorderedk-tuple of a setS, |S|=n, such that each row and each column of the array contains each element ofS exactly once and the array contains each unorderedk-tuple exactly once. A method of generating the unordered triples on the setS=GF(q) ? {∞} is given, 3 ∣ (q ∣ 1). This method is used to construct GRS's of appropriate ordern and degree 3, for alln<50.  相似文献   

13.
Let X and Y be fences of size n and m, respectively and n, m be either both even or both odd integers (i.e., |m-n| is an even integer). Let \(r = \left\lfloor {{{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} 2}} \right. \kern-0em} 2}} \right\rfloor\) . If 1<n<-m then there are \(a_{n,m} = (m + 1)2^{n - 2} - 2(n - 1)(\begin{array}{*{20}c} {n - 2} \\ r \\ \end{array} )\) of strictly increasing mappings of X to Y. If 1<-m<-n<-2m and s=1/2(n?m) then there are a n,m+b n,m+c n of such mappings, where $$\begin{gathered} b_{n,m} = 8\sum\limits_{i = 0}^{s - 2} {\left( {\begin{array}{*{20}c} {m + 2i + 1} \\ l \\ \end{array} } \right)4^{s - 2 - 1} } \hfill \\ {\text{ }}c_n = \left\{ \begin{gathered} \left( {\begin{array}{*{20}c} {n - 1} \\ {s - 1} \\ \end{array} } \right){\text{ if both }}n,m{\text{ are even;}} \hfill \\ {\text{ 0 if both }}n,m{\text{ are odd}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$   相似文献   

14.
We will solve several fundamental problems of Möbius groupsM(R n) which have been matters of interest such as the conjugate classification, the establishment of a standard form without finding the fixed points and a simple discrimination method. Let \(g = \left[ {\begin{array}{*{20}c} a &; b \\ c &; d \\ \end{array} } \right]\) be a Clifford matrix of dimensionn, c ≠ 0. We give a complete conjugate classification and prove the following necessary and sufficient conditions:g is f.p.f. (fixed points free) iff \(g \sim \left[ {\begin{array}{*{20}c} \alpha &; 0 \\ c &; {\alpha '} \\ \end{array} } \right]\) , |α|<1 and |E?AE 1| ≠ 0;g is elliptic iff \(g \sim \left[ {\begin{array}{*{20}c} \alpha &; \beta \\ c &; {\alpha '} \\ \end{array} } \right]\) , |α| <1 and |E?AE 1|=0;g is parabolic iff \(g \sim \left[ {\begin{array}{*{20}c} \alpha &; 0 \\ c &; {\alpha '} \\ \end{array} } \right]\) , |α|=1; andg is loxodromic iff \(g \sim \left[ {\begin{array}{*{20}c} \alpha &; \beta \\ c &; {\alpha '} \\ \end{array} } \right]\) , |α| >1 or rank (E?AE 1) ≠ rank (E?AE 1,ac ?1+c ?1 d), where α is represented by the solutions of certain linear algebraic equations and satisfies $\left| {c^{ - 1} \alpha '} \right| = \left| {\left( {E - AE^1 } \right)^{ - 1} \left( {\alpha c^{ - 1} + c^{ - 1} \alpha '} \right)} \right|.$   相似文献   

15.
Suppose that the Riemann hypothesis holds. Suppose that $$\psi _1 (x) = \mathop \sum \limits_{\begin{array}{*{20}c} {n \leqslant x} \\ {\{ (1/2)n^{1/c} \} < 1/2} \\ \end{array} } \Lambda (n)$$ where c is a real number, 1 < c ≤ 2. We prove that, for H>N 1/2+10ε, ε > 0, the following asymptotic formula is valid: $$\psi _1 (N + H) - \psi _1 (N) = \frac{H}{2}\left( {1 + O\left( {\frac{1}{{N^\varepsilon }}} \right)} \right)$$ .  相似文献   

16.
We show that the number of elements in FM(1+1+n), the modular lattice freely generated by two single elements and an n-element chain, is 1 $$\frac{1}{{6\sqrt 2 }}\sum\limits_{k = 0}^{n + 1} {\left[ {2\left( {\begin{array}{*{20}c} {2k} \\ k \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {2k} \\ {k - 2} \\ \end{array} } \right)} \right]} \left( {\lambda _1^{n - k + 2} - \lambda _2^{n - k + 2} } \right) - 2$$ , where \(\lambda _{1,2} = {{\left( {4 \pm 3\sqrt 2 } \right)} \mathord{\left/ {\vphantom {{\left( {4 \pm 3\sqrt 2 } \right)} 2}} \right. \kern-0em} 2}\) .  相似文献   

17.
Algebraic immunity has been considered as one of cryptographically significant properties for Boolean functions. In this paper, we study ∑d-1 i=0 (ni)-weight Boolean functions with algebraic immunity achiev-ing the minimum of d and n - d + 1, which is highest for the functions. We present a simpler sufficient and necessary condition for these functions to achieve highest algebraic immunity. In addition, we prove that their algebraic degrees are not less than the maximum of d and n - d + 1, and for d = n1 +2 their nonlinearities equalthe minimum of ∑d-1 i=0 (ni) and ∑ d-1 i=0 (ni). Lastly, we identify two classes of such functions, one having algebraic degree of n or n-1.  相似文献   

18.
A thorough investigation of the systemd~2y(x):dx~2 p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤xx_0>0) -η, x_0≤x<2π(η>0)p(x)=p(x 2π),-∞相似文献   

19.
N. Ruškuc 《Semigroup Forum》1995,51(1):319-333
Some presentations for the semigroups of all 2×2 matrices and all 2×2 matrices of determinant 0 or 1 over the field GF(p) (p prime) are given. In particular, if <a, b, c‖ R> is any (semigroup) presentation for the general linear group in terms of generators $$A = \left( {\begin{array}{*{20}c} 1 & 0 \\ 1 & 1 \\ \end{array} } \right),B = \left( {\begin{array}{*{20}c} 1 & 1 \\ 0 & 1 \\ \end{array} } \right),C = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & \xi \\ \end{array} } \right),$$ where ζ is a primitive root of 1 modulop, then the presentation $$\langle a,b,c,t|R,t^2 = ct = tc = t,tba^{p - 1} t = 0,b^{\xi - 1} atb = a^{\xi - 1} tb^\xi a^{1 - \xi - 1} \rangle $$ defines the semigroup of all 2×2 matrices over GF (2,p) in terms of generatorsA, B, C and $$T = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right).$$ Generating sets and ranks of various matrix semigroups are also found.  相似文献   

20.
We study the existence of forced vibrations of nonlinear wave equation: (*) $$\begin{array}{*{20}c} {u_{tt} - u_{xx} + g(u) = f(x,t),} & {(x,t) \in (0,\pi ) \times R,} \\ {\begin{array}{*{20}c} {u(0,t) = u(\pi ,t) = 0,} \\ {u(x,t + 2\pi ) = u(x,t),} \\ \end{array} } & {\begin{array}{*{20}c} {t \in R,} \\ {(x,t) \in (0,\pi ) \times R,} \\ \end{array} } \\ \end{array}$$ whereg(ξ)∈C(R,R)is a function with superlinear growth and f(x, t) is a function which is 2π-periodic in t. Under the suitable growth condition on g(ξ), we prove the existence of infinitely many solution of (*) for any given f(x, t).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号