首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
We report here the fabrication of hollow silica particles with mesopores larger than 10 nm on their wall via a facile two-step etching method. Different from the conventional template method, the new method uses the silica particles as starting materials, which were synthesized using the well-known Stöber method. In the hollow silica preparation, first, we gently etch the silica particles with a NaOH solution without using template molecules to make them porous. Then, we coat the porous silica particles with poly-dimethyldiallylammonium chloride (PDDA) and treat the PDDA-coated porous silica with an ammonia solution to form the hollow silica nanospheres. In this study, we found that the NaOH dosage and ammonia concentration have significant impact on the morphology of the final products. Adsorption was also studied and results show that the hollow nanospheres can effectively uptake protein-based biomolecules (hemoglobin).  相似文献   

2.
Mesoporous zeolite silicalite-1 and Al-ZSM-5 with intracrystalline mesopores were synthesized with polyelectrolyte-surfactant complex as the template. Complex colloids were first formed by self-assembly of the anionic polymer poly(acrylic acid) (PAA) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) in basic solution. During the synthesis procedure, upon the addition of the silica source, microporous template (tetrapropylammonium hydroxide), and NaCl, these PAA/CTA complex colloids underwent dissociation and gave rise to the formation of hollow silica spheres with mesoporous shells templated by CTAB micelles and PAA domains as the core. Under hydrothermal treatment, the hollow silica spheres gradually merged together to form larger particles with the PAA domains embedded as the space occupant, which acted as a template for intracrystalline mesopores during the crystallization of the zeolite framework. Amphiphilic organosilane was used to enhance the connection between the PAA domain and the silica phase during the synthesis. After calcination, single crystal-like zeolite particles with intracrystalline mesopores of about 5-20 nm were obtained, as characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N(2) adsorption measurements. With the addition of an aluminum source in the synthesis, mesoporous zeolite Al-ZSM-5 with intracrystalline mesopores was also synthesized, and enhanced catalytic property was observed with mesoporous Al-ZSM-5 in acetalization of cyclohexanone with methanol.  相似文献   

3.
Possibility of the post-synthesis functionalisation of the template-free and template-structured silica films of ca. 200 nm thickness on glass slides was evaluated. The films were prepared by dip-coating from TEOS sol–gel precursor in the absence or presence of CTAB template. It has been found out that the template-structured silica films can be functionalised with Ag nanoparticles via [Ag(NH3)2]NO3 ion-exchange or with adsorbed Methylene Blue (MB) cationic dye due to the presence of the well-organised mesopores after template removal. In contrast, only the external geometric surface of the template-free silica films appeared to be accessible for modifier molecules. Possibility of functionalisation of the multi-layered template-structured silica film depends on the sequence of dip-coating and calcination steps upon their preparation. When preparation includes reiteration of dip-coating and calcination steps, only the latest top silica film appears to be accessible to modifier molecules. When preparation includes successive dip-coating cycles accomplished by calcination of the final multi-layered film, all pores appear to be accessible since their formation occurs via simultaneous removal of the template molecules over the whole thickness of the multi-layered template-structured silica film.  相似文献   

4.
Herein, we demonstrate that silica films with perpendicular macroporous channels and accessible ordered mesopores can be conveniently prepared. The hierarchical macroporous–mesoporous silica films are synthesized by using zinc oxide nanorod array as macroporous template and CTAB surfactant as mesoporous template. In basic surfactant-containing solution, ordered mesoporous silica shells homogeneously grow on the zinc oxide nanorod array. The growth of the mesostructures do not require any chemical modification for the zinc oxide nanorod, which opens a new way for preparing hierarchical silica films with perpendicular mesochannels. The prepared hierarchical macroporous–mesoporous silica films possess a uniform thickness of 2 mm, large perpendicular macropores with a length of 1.8 mm and a width of 80 nm, and accessible ordered mesopores. Separation experiment demonstrates that this macroporous–mesoporous film can effectively separate biomolecules with different sizes.  相似文献   

5.
分别以过硫酸钾和偶氮二异丁基脒盐酸盐为引发剂,以聚乙烯吡咯烷酮(PVP)为分散剂,在水中引发苯乙烯聚合制备了2种表面分别带负电性和正电性基团的聚苯乙烯(PS)模板微球.在氨水催化下,利用正硅酸乙酯的水解缩合,形成PS/SiO_2复合微球,去除模板后得到中空SiO_2微球,并对其进行FTIR、电子显微镜、TGA以及氮气吸附等分析表征.结果表明,PS模板微球表面的电性决定了OH-的分布,从而导致PS模板微球表面SiO_2壳层不同的形成机制.当以表面带负电的PS微球为模板时,可得到树莓状的中空SiO_2微球;而以表面带正电的PS微球为模板时,得到是表面光滑的,具有介孔结构的中空SiO_2微球.  相似文献   

6.
Recently, extensive works have been devoted to the morphology control of mesoporous materials with respect to their use in various applications. In this paper, we used two kinds of mesoporous silica, SBA-15 rods and spheres as hard templates to synthesize morphology-controllable mesoporous metal oxides. By carefully controlling the loading of metal precursors in the mesopores of the hard template, mesoporous Co3O4 and CeO2 with different morphologies, such as micrometer-sized rod, hollow sphere, saucer-like sphere, and solid sphere were conveniently obtained. The structural properties of these materials were characterized by XRD, BET, SEM and TEM. In addition, it is found that the differences observed in the textural properties of the two mesoporous metal oxides nanocasted from the same template can be attributed to the properties of metal precursors and the interaction between metal oxide and SiO2. Thus-obtained mesoporous metal oxides with such special morphologies may have a potential application in the field of environmental catalytic oxidation.  相似文献   

7.
Using lipids (N-acyl amino acids) and 3-aminopropyltriethoxysilane as structure- and co-structure-directing agents, mesoporous silicas with four different morphologies, that is, helical ribbon (HR), hollow sphere, circular disk, and helical hexagonal rod, were synthesized just by changing the synthesis temperature from 0 degrees C to 10, 15, or 20 degrees C. The structures were studied by electron microscopy. It was found that 1) the structures have double-layer disordered mesopores in the HR, radially oriented mesopores in the hollow sphere, and highly ordered straight and chiral 2D-hexagonal mesopores in the disklike structure and helical rod, respectively; 2) these four types of mesoporous silica were transformed from the flat bilayered lipid ribbon with a chain-interdigitated layer phase through a solid-solid transformation for HR formation and a dissolving procedure transformation for the synthesis of the hollow sphere, circular disk, and twisted morphologies; 3) the mesoporous silica helical ribbon was exclusively right-handed and the 2D-hexagonal chiral mesoporous silica was excessively left-handed when the L-form N-acyl amino acid was used as the lipid template; 4) the HR was formed only by the chiral lipid molecules, whereas the 2D-hexagonal chiral mesoporous silicas were formed by chiral, achiral, and racemic lipids. Our findings give important information for the understanding of the formation of chiral materials at the molecular level and will facilitate a more efficient and systematic approach to the generation of rationalized chiral libraries.  相似文献   

8.
Ordered mesoporous silicas (OMSs) with spherical morphology were synthesized by using mixed surfactants of anionic sodium dodecyl sulfate and nonionic block copolymer EO20PO70EO20 (P123) as template through an acid-catalyzed silica sol?Cgel process. A variety of characterizations demonstrated that the silica products exhibited well-formed spherical morphology, ordered mesostructure, narrow pore size distribution and large surface area (~700 m2 g?1). It was found that the synthesized OMSs had high adsorption capacity by using oxymatrine as model solute. The column packed with the silica spheres exhibited low back pressure and baseline separation of aromatic compounds such as benzene and nitrobenzene could be achieved. These results demonstrated the synthesized OMSs as a potential stationary phase for liquid chromatography.  相似文献   

9.
MoS2, a typical layered transition-metal dichalcogenide, is promising as an electrode material in supercapacitors. However, its low electrical conductivity could lead to limited capacitance if applied in electrochemical devices. Herein, a new nanostructure composed of hollow carbon–MoS2–carbon was successfully synthesized through an l -cysteine-assisted hydrothermal method by using gibbsite as a template and polydopamine as a carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which were made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, were obtained. The platelets showed excellent dispersibility and stability in water, and good electrical conductivity due to carbon provided by the calcination of polydopamine coatings. The hollow nanoplate morphology of the material provided a high specific surface area of 543 m2 g−1, a total pore volume of 0.677 cm3 g−1, and fairly small mesopores (≈5.3 nm). The material was applied in a symmetric supercapacitor and exhibited a specific capacitance of 248 F g−1 (0.12 F cm−2) at a constant current density of 0.1 A g−1; thus suggesting that hollow carbon–MoS2–carbon nanoplates are promising candidate materials for supercapacitors.  相似文献   

10.
Bimodal macro-mesoporous silica networks have been prepared in a simple one-pot synthesis using an inexpensive tetramine surfactant and tetraethoxysilane as a silica precursor. These novel materials show high pore volumes and templated mesopores (average pore size 3.0 nm) embedded in 20 nm thick walls forming interparticle large meso/macropores. The judicious control of the pH during the silica formation allows for the precise control of the interparticle condensation, likely due to the change in the interaction between the tetramine surfactant and the silica precursors. Finally, a highly porous carbon replica with bimodal porosity was prepared by using the bimodal silica as a hard sacrificial template. The microstructure of the silica template was accurately transferred to the carbon material obtaining high surface areas (up to 1300 m2 g−1) and total pore volumes ≥2 cm3 g−1.  相似文献   

11.
Poly(ethyl methacrylate-co-hydroxyethyl acrylate) 70/30 %wt/silica, P(EMA-co-HEA)/SiO2, nanocomposites, with silica contents ranging from 0 to 30 %wt, were synthesized and studied as promising candidate materials for the synthetic matrix of scaffolds for bone substitutes or dentin regeneration. The physico-chemical properties of the hybrids were studied by calorimetry and by contact angle measurements on the surfaces. The dynamic-mechanical and compression properties were analysed. Intermediate silica contents in the range from 10 to 20 %wt of silica rendered co-continuous interpenetrated structures, in which silica produced a reinforcing effect in the polymeric matrix and at the same time conferred bioactivity to the surfaces by improving surface wettability, making these hybrids appropriate for the proposed application. On the contrary, silica percentages below 10 %wt formed disconnected inorganic aggregates at the nanoscale dispersed in the copolymer matrix, which did not modify significantly the copolymer properties. Silica contents above 20 %wt formed denser inorganic networks with few terminal silanol groups available at the surfaces, much more rigid and hardly manageable samples.  相似文献   

12.
Novel lanthanum borate (LaBO3) hollow nanospheres of size 34 ± 2 nm have been reported for the first time by soft-template self-assembly process. Poly(styrene-b-acrylic acid-b-ethylene oxide) (PS-PAA-PEO) micelle with coreshellcorona architecture serves as an efficient soft template for fabrication of LaBO3 hollow particles using sodium borohydride (NaBH4) and LaCl3?7H2O as the precursors. In this template, the PS block (core) acts as a template of the void space of hollow particle, the anionic PAA block (shell) serves as reaction field for metal ion interactions, and the PEO block (corona) stabilizes the polymer/lanthana composite particles. The PS-PAA-PEO micelles and the resulting LaBO3 hollow nanospheres were thoroughly characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), X-ray diffraction, magic angle spinning-nuclear magnetic resonance (11B MAS NMR), energy dispersive X-ray analysis, thermal analyses, Fourier transform infra red spectroscopy, and nitrogen adsorption/desorption analyses. The nitrogen adsorption/desorption analyses and TEM observation of the hollow particles confirmed the presence of disordered mesopores in the LaBO3 shell domain. The solid state 11B MAS NMR spectra of LaBO3 hollow nanospheres revealed that the shell part contains both trigonal and tetrahedral boron species. The LaBO3 hollow particles were applied to anode materials in lithium-ion rechargeable batteries (LIBs). The hollow particles exhibited high coulombic efficiency and charge–discharge cycling capacities of up to 100 cycles in the LIBs.  相似文献   

13.
Nanocrystalline boron nitride (BN) with needle-like and hollow spherical morphology has been synthesized by nitriding of MgB2 with NH4Cl and NH4Cl-NaN3, respectively. The amount of NaN3 has an obvious effect on the size of the hollow spheres. The samples were characterized by X-ray powder diffraction, Fourier transformation infrared spectroscopy, X-ray photoelectron spectra, and transmission electron microscopy. The possible mechanism of morphology control is also discussed.  相似文献   

14.
Hierarchically porous silica nanospheres with well-defined morphology and uniform particle size had been synthesized through a multistep sol–gel method combined with pseudomorphic transformation in the presence of polyvinylpyrrolidone (PVP) and cetyltrimethylammoium bromide (CTAB) as dual template. The prepared materials were characterized by small-angle X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and nitrogen physical adsorption techniques. The preparation process and the origin of hierarchical structure were also investigated. It had been shown that the hierarchical structure of synthesized materials comprises wormlike framework mesopores with diameters of about 3 nm and bubble-like pores with diameters of 20–30 nm. CTAB and PVP behave as dual-template and are responsible for the formation of the mesopores and big pores, respectively. Not only the porous structure, but also the morphology and particle size of hierarchical materials can be adjusted by controlling the addition of PVP. In addition, the formation process of hierarchically porous silica was investigated by transmission electron microscopy, FT-IR spectra and thermo-gravimetric curves and a possible synthetic mechanism had been proposed.  相似文献   

15.
2,5-Dioxypiperazine (DOPZ) was covalenty bonded as a chelating compound to chloropropyltrimethoxysilane (Si–Cl) for the formation of a new chemisorbed silica [Si–(CH2)3–DOPZ]. Physisorbed silica-loaded-2,5-dioxypiperazine [Si–DOPZ] was also synthesized via a physical adsorption approach. Elucidation of the chemisorption and physisorption of 2,5-dioxypiperazine onto silica was confirmed on the basis of 70 eV electron impact mass spectrometric (70 eV EI-MS) mode of ionization via a direct insertion probe (DIP) as a promising technique for providing characteristic fragment ion peaks. The metal probe testing method and elemental analysis were applied to determine the surface coverage values and these were found to be 0.179 and 0.160 mmol g−1 for [Si–(CH2)3–DOPZ] and 0.251 mmol g−1 for [Si–DOPZ]. [Si–(CH2)3–DOPZ] was characterized by high stability in acidic and buffer solutions, pH 1–7, compared to [Si–DOPZ]. Differential scanning calorimetry studies (DSC) for the modified silica were performed to evaluate the various thermodynamic and kinetic parameters of the thermal degradation processes, and these have been enumerated. The results obtained by both EI-MS and DSC are very similar in many respects. Metal chelation and stoichiometric properties of chemically modified silica were evaluated on the basis of the metal binding capacity, distribution coefficient and separation factor for a series of metal ions. The evaluated results refer to the high metal chelating properties of [Si–(CH2)3–DOPZ] for cadmium(II), lead(II) copper(II) and mercury(II). These four [Si–(CH2)3–DOPZ]–metal complexes were also synthesized and the identified stoichiometric ratios were found to be 1:2 based on the nitrogen and metal analysis. EI-MS via 70-eV ionization was also used as a potential method for further confirmation of the metal complex formation based on structure and fragmentation elucidation. DSC studies of these four metal complexes were also performed and evaluated.  相似文献   

16.
Silica xerogels with different structures and morphology, synthesized using a sol-gel procedure, were used as a carrier of vanadium catalysts (VOCl3/AlEt2Cl) for ethylene polymerization. Two techniques of catalyst synthesis were applied: slurry impregnation and gas-phase adsorption and the relevant polymerization methods were then employed. The effect of the carrier structure and morphology on the vanadium loading in the catalysts, the catalyst’s activity and kinetic stability were investigated.  相似文献   

17.
Amino-functionalized silica spheres with centrosymmetric radial mesopores and high amino loading were synthesized using the anionic surfactant N-lauroylsarcosine sodium (Sar-Na) as template and 3-aminopropyltrimethoxysilane (APTMS) as co-structure directing agent (CSDA) by an orthogonal experiment optimization. The synthesized amino-functionalized mesoporous silica (AFMS) was used as adsorbent to the selective adsorption of CO2. The effects of water vapor in the adsorptive stream on the adsorption properties of CO2 were investigated in detail. The results show that the synthesized adsorbent possesses a high adsorption selectivity for CO2 over CH4 and N2 due to the specific interactions between CO2 and amino groups. The presence of water vapor in the adsorptive stream can dramatically enhance the adsorbed amount of CO2 because of the partial formation of bicarbonate in the presence of moisture. Furthermore, the adsorbent shows a good stability, confirmed by adsorption-regeneration cycles. Based on these excellent properties, the application of the developed AFMS adsorbent in the selective adsorption of CO2 is anticipated.  相似文献   

18.
This article reports a novel preparation of wormlike mesoporous silica with 1-hexadecane-3-methylimidazolium bromide (C16MIM)Br, a kind of room-temperature ionic liquids (RTILs), as a template via a sol-gel nanocasting technique. The characterization studies were carried out in contrast with that of the mesoporous silica with cetyltrimethylammonium bromide (CTAB), a usually used template, which has the same alkyl chain length with (C16MIM)Br. The structures of the silica materials have been characterized by Transmission electron microscopy (TEM), High-resolution TEM (HRTEM) and N2 adsorption-desorption measurements. The results show that both the mesoporous materials prepared with different templates respectively can form regular wormlike mesopores with ca. 2 nm in pore diameter. They also have large BET surface areas with narrow size distribution. Compared to the CTAB-template mesoporous silica, the material with (C16MIM)Br as a template has highly uniform pore size and larger surface area. In addition, the formation mechanism of the wormlike mesopores with RTIL has been proposed by an electrostatic charge matching assembly-pathway and steric factor.  相似文献   

19.
The effect of four ionic liquids on the porous texture of silica aerogels synthesized from mixed tetramethoxysilane and methyltrimethoxysilane and dried by the CO2 supercritical method, was studied. Two of these ionic liquids were composed of BF4 anions while the other two included Cl anions. The synthesis of gels from ionic liquids did not require another acidic catalyst for silica hydrolysis, nor a basic catalyst for silica condensation. These aerogels were compared with traditional aerogels made according to a double step catalysis, which first involved hydrolysis with HCl followed by condensation with pH 9 Tris HCl buffer. Gel mass analysis and thermogravimetric data showed that, when the initial molar of ionic liquid to Si was 1.58, only ~2% (by mass) of the initial ionic liquids consisting of BF4 anions and ~10% (by mass) of ionic liquids containing Cl anions, remained in the aerogels after supercritical drying. Moreover, X-ray diffraction confirmed that in ionic liquids based on BF4 anions, evaporation of the volatile components before supercritical CO2 drying led to the formation of regularly ordered mesopores.  相似文献   

20.
The analysis of nonylphenol ethoxylate (A9PEOn) surfactants with LC-ESI-MS was investigated in a detailed study of the formation of different types of adducts. Part of the observations was explained by calculating their relative stabilities using molecular dynamics techniques.Strong differences in adduct formation behaviour were found for different oligomers.Beside the common sodium adducts, surfactant dimer adducts [2 × A9PEO1,2 + Na]+, adducts including a solvent molecule [A9PEO1,2 + MeOH + Na]+ and doubly charged adducts [A9PEO>11 + 2 × Na]2+ were found.Molecular dynamics calculations showed that the A9PEOn molecule wraps itself around the complexing sodium ion in a way that negative electronic charges on oxygen have optimum electrostatic interaction with this ion. van der Waals interactions between alkyl chains are of less importance for the stability of these adducts. Both [2 × A9PEO2,5 + Na]+ dimer and [A9PEO2,5 + Na]+ monomer adducts turned out to be stable from an energetic point of view with adducts of A9PEO5 being more stable than adducts of A9PEO2. Only for the monomer adduct the latter is in accordance with experimental observations.Consequences of the formation of several adducts per A9PEOn oligomer for the quantitative analysis of environmental samples were evaluated. In clean samples, it was found that the presence of short-chain A9PEO1,2 can cause an overestimation of long-chain A9PEO>2. In real environmental extracts, other processes like matrix effects have a stronger influence on the quantitative result, and therefore no significant influence of adduct formation processes could be observed. However, inclusion of [A9PEO1,2 + MeOH + Na]+ adduct signals does improve the detection limits of the two short-chain oligomers.Correct quantitative results are obtained when A9PEO1 and A9PEO2 are quantified separately, and longer oligomers with a molar calibration followed by correction of the average molar weight of the A9PEO>2 in the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号