首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complex thermoacoustic oscillations are observed experimentally in a simple laboratory combustor that burns lean premixed fuel-air mixture, as a result of nonlinear interaction between the acoustic field and the combustion processes. The application of nonlinear time series analysis, particularly techniques based on phase space reconstruction from acquired pressure data, reveals rich dynamical behavior and the existence of several complex states. A route to chaos for thermoacoustic instability is established experimentally for the first time. We show that, as the location of the heat source is gradually varied, self-excited periodic thermoacoustic oscillations undergo transition to chaos via the Ruelle-Takens scenario.  相似文献   

2.
Recently, there has been a growing interest in understanding and characterising intermittent burst oscillations that presage the onset of combustion instability. We construct a deterministic model to capture this intermittency route to instability in a bluff-body stabilised combustor by coupling the equations governing vortex shedding and the acoustic wave propagation in a confinement. A feedback mechanism is developed wherein the sound generated due to unsteady combustion affects the vortex shedding. This feedback leads to a variation in the time of impingement of the vortices with the bluff body causing the system to exhibit chaos, intermittency, and limit cycle oscillations. Experimental validation of the model is provided using various precursor measures that quantify the observed intermittent states.  相似文献   

3.
This paper investigates the sensitivity of the autoignition delay in reheat flames to acoustic pulsations associated with high-frequency transverse thermoacoustic oscillations. A reduced order model for the response of purely autoignition-stabilised flames to acoustic disturbances is compared with experimental observations. The experiments identified periodic flame motion associated with high-amplitude transverse limit-cycle oscillations in an atmospheric pressure reheat combustor. This flame motion was assumed to be the result of a superposition of two flame-acoustic coupling mechanisms: autoignition delay modulation by the oscillating acoustic field and displacement and deformation of the flame by the acoustic velocity. The reduced order model coupled to reaction kinetics calculations reveals that a significant portion of the observed flame motion can be attributed to autoignition delay modulation. The ignition position responds instantaneously to the acoustic pressure at the time of ignition, as observed experimentally. The model also provides insight into the importance of the history of acoustic disturbances experienced by the fuel-air mixture prior to ignition. Due to the high-frequency nature of the instability, a fluid particle can experience multiple oscillation cycles before ignition. The ignition delay responds in-phase with the net-acoustic perturbation experienced by a fluid particle between injection and ignition. These findings shed light on the underlying mechanisms of the flame motion observed in experiments and provide useful insight into the importance of autoignition delay modulation as a driving mechanism of high-frequency thermoacoustic instabilities in reheat flames.  相似文献   

4.
We experimentally study the effect of rotational asymmetries in the flame response distribution on the thermoacoustic oscillations of four turbulent lean-premixed combustors coupled in a ring network. The asymmetries are created via different combinations of high-swirl (HS) and low-swirl (LS) nozzles. By analyzing the inter-combustor acoustic interactions in terms of discrete thermoacoustic modes, we find a variety of modal patterns: (i) global alternating push–pull modes emerge for most pair-wise asymmetric nozzle combinations, (ii) 2-can push–pull modes emerge for an alternating 2-fold symmetric nozzle combination, and (iii) strong mode localization and global push–push modes emerge when the HS nozzles outnumber the LS nozzles. Using a complex systems framework, we reinterpret these modal patterns as collective states, such as a weak breathing chimera, a weak anti-phase chimera, and in-phase/anti-phase synchronization. This study shows that changing the flame response distribution of a multi-combustor system, via changes in the nozzle swirl distribution, can induce a variety of modal patterns and collective states. This sets the stage for the potential use of rotational asymmetries in the passive control of thermoacoustic modes in can-annular combustion systems.  相似文献   

5.
Coherent structures, such as those arising from hydrodynamic instabilities or excited by thermoacoustic oscillations, can significantly impact flame structure and, consequently, the nature of heat release. The focus of this work is to study how coherent oscillations of varying amplitudes can impact the growth of the flame brush in a bluff-body stabilized flame and how this impact is influenced by the free stream turbulence intensity of the flow approaching the bluff body. We do this by providing external acoustic excitation at the natural frequency of vortex shedding to simulate a highly-coupled thermoacoustic instability, and we vary the in-flow turbulence intensity using perforated plates upstream of the flame. We use high-speed stereoscopic particle image velocimetry to obtain the three-component velocity field and we use the Mie-scattering images to quantify the behavior of the flame edge. Our results show that in the low-turbulence conditions, presence of high-amplitude acoustic excitation can cause the flame brush to exhibit a step-function growth, indicating that the presence of strong vortical structures close to the flame can suppress flame brush growth. This impact is strongly dependent on the in-flow turbulence intensity and the flame brush development in conditions with higher levels of in-flow turbulence are minimally impacted by increasing amplitudes of acoustic excitation. These findings suggest that the sensitivity of the flow and flame to high-amplitude coherent oscillations is a strong function of the in-flow turbulence intensity.  相似文献   

6.
The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.  相似文献   

7.
Despite significant research, self-excited thermoacoustic oscillations continue to hinder the development of lean-premixed gas turbines, making the early detection of such oscillations a key priority. We perform output-only system identification of a turbulent lean-premixed combustor near a Hopf bifurcation using the noise-induced dynamics generated by inherent turbulence in the fixed-point regime, prior to the Hopf point itself. We model the pressure fluctuations in the combustor with a van der Pol-type equation and its corresponding Stuart–Landau equation. We extract the drift and diffusion terms of the equivalent Fokker–Planck equation via the transitional probability density function of the pressure amplitude. We then optimize the extracted terms with the adjoint Fokker–Planck equation. Through comparisons with experimental data, we show that this approach can enable prediction of (i) the location of the Hopf point and (ii) the limit-cycle amplitude after the Hopf point. This study shows that output-only system identification can be performed on a turbulent combustor using only pre-bifurcation data, opening up new pathways to the development of early warning indicators of thermoacoustic instability in practical combustion systems.  相似文献   

8.
This experimental study elucidates the unsteady dynamics of flame-flow interactions during unique thermoacoustic instability (TI) and the transition mechanism from stable combustion to TI for lean-premixed hydrogen turbulent jet flames in a low-swirl combustor (LSC), where a swirler assembly consists of an unswirled central region (CR) and an annular swirler region (SR). Simultaneous 200-kHz pressure fluctuation p’ measurements and 10-kHz OH* chemiluminescence imaging, as well as 40-kHz stereoscopic particle image velocimetry (SPIV) and two-dimensional PIV measurements for steady-state and transient data acquisitions, respectively, were conducted. The SPIV was performed in multiple planes to explore three-dimensional velocity fields. During TI, periodic flashback was possibly caused by significant axial velocity oscillations, resulting in the local mixture velocity falling below the turbulent flame speed. The large-scale vortex ring generated by the velocity oscillations caused axisymmetric radial velocity Vr oscillations with switching signs during the TI period. Similar to a typical low-swirl flow, the positive Vr away from the combustor axis created diverging flow, whereas unlike the typical flowfield, the negative Vr toward the combustor axis generated converging flow while flattening the axial velocity distributions, which was the signature phenomenon for this TI. Using the transient data and dynamic mode decomposition, variations in delay times between the mixture injection and its convection to a region with positive local Rayleigh indices were investigated. During stable combustion, the mixture jet from the SR predominantly induced thermoacoustic coupling (TC). As the combustion transitioned into the TI, the mixture jet from the CR began to induce TC and, eventually, achieved predominance in inducing TC during fully evolved TI. The transition from the SR jet- into CR jet-dominant TI arising from the dynamic flame-flow interactions resulted from the inherent physical characteristics of hydrogen flames, thereby yielding the larger p’ amplitude compared to typical TIs.  相似文献   

9.
Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier–Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various physical mechanisms. This has implications in selecting the operating conditions for such flames and for devising proper control strategies for the avoidance of thermoacoustic instability.  相似文献   

10.
Combustion instabilities were investigated experimentally for a hydrogen-rich combustion in a model afterburner installed at the end of a high-enthalpy wind tunnel. Air was supplied at 0.3 MPa and 950 K. The combustion instabilities were studied with the time-resolved measurements of a near-infrared (NIR) emission from water molecules over 780 nm using a high-speed video camera. Pressure was also measured in the combustor. The pressure and the NIR images were analyzed by data-driven approach, which include the fast Fourier transform (FFT), the wavelet transform, the dynamic mode decomposition (DMD) and the Gaussian process latent variable methods (GP-LVM). Thermoacoustic instability was observed under a rich condition, and the amplitude of the pressure oscillation was the maximum at the overall equivalence ratio of approximately 2.4 or 2.7 as a result of the FFT. The combustion dynamics were investigated in detail for an experimental run at the equivalence ratio of 2.4. A pressure spectrogram indicated a flame–vortex interaction with a Strouhal number of 0.5 (2300 Hz), thermoacoustic instability (560 Hz), and their transitions with the wavelet transform. For NIR images, the same tendency was also observed in the spectrogram of the modes obtained by the Gabor-filtered DMD, which could clearly resolve the high-order harmonic modes of the flame–vortex interaction and the thermoacoustic instability. Furthermore, NIR images were analyzed with GP-LVM to study the evolution of the combustion dynamics in a three-dimensional latent space. Recurrence plots with the Euclidean distance function were used to visualize the evolutions of the combustion dynamics. A limit cycle behavior of the flame–vortex interaction was clearly observed, whereas the limit cycle of the thermoacoustic instability showed more complicated behaviors. The transition behaviors of the instabilities were observed in the recurrence plots in detail, indicating that the flame–vortex interaction excited the fourth harmonic mode of the thermoacoustic instability, followed by the basic mode.  相似文献   

11.
A numerical investigation of the interaction between a spray flame and an acoustic forcing of the velocity field is presented in this paper. In combustion systems, a thermoacoustic instability is the result of a process of coupling between oscillations in heat released and acoustic waves. When liquid fuels are used, the atomisation and the evaporation process also undergo the effects of such instabilities, and the computational fluid dynamics of these complex phenomena becomes a challenging task. In this paper, an acoustic perturbation is applied to the mass flow of the gas phase at the inlet and its effect on the evaporating fuel spray and on the flame front is investigated with unsteady Reynolds averaged Navier-Stokes numerical simulations. Two flames are simulated: a partially premixed ethanol/air spray flame and a premixed pre-vaporised ethanol/air flame, with and without acoustic forcing. The frequencies used to perturb the flames are 200 and 2500 Hz, which are representative for two different regimes. Those regimes are classified based on the Strouhal number St = (D/U)ff: at 200 Hz, St = 0.07, and at 2500 Hz, St = 0.8. The exposure of the flame to a 200 Hz signal results in a stretching of the flame which causes gas field fluctuations, a delay of the evaporation and an increase of the reaction rate. The coupling between the flame and the flow excitation is such that the flame breaks up periodically. At 2500 Hz, the evaporation rate increases but the response of the gas field is weak and the flame is more stable. The presence of droplets does not play a crucial role at 2500 Hz, as shown by a comparison of the discrete flame function in the case of spray and pre-vaporised flame. At low Strouhal number, the forced response of the pre-vaporised flame is much higher compared to that of the spray flame.  相似文献   

12.
The Rayleigh index has been used for decades by a large number of researchers as an indicator to determine if a flame is driving or damping thermoacoustic interaction mechanisms. The use of the Rayleigh criterion has found applications in rocket combustors, gas turbine combustion technology and basic combustion research. The global Rayleigh index or integral is obtained by integrating the product of heat release rate and pressure fluctuations over space and time. Depending on the phase between pressure oscillations and heat release rate response, the oscillations can be enhanced or damped. It is commonly assumed in literature that the sign of the Rayleigh index from steady state data can be used to determine if the thermoacoustic feedback loop is stabilizing or destabilizing. However, we show in this paper that under fairly general conditions, a correctly measured Rayleigh index is always positive if evaluated from statistically stationary data. This proves to be true even if the heat release rate response to pressure fluctuations is in phase opposition to those pressure fluctuations. This is shown in a straightforward manner by substituting the wave equation with a heat release rate source term into the Rayleigh index. This was verified experimentally on a fully premixed combustion system by measuring the flame chemiluminescence using a photo multiplier and pressure fluctuations using a microphone placed sufficiently close to the flame to ensure acoustic compactness for the frequency range of interest. A large range of operating conditions have been tested, spanning linearly stable and unstable stationary thermoacoustic states, respectively corresponding to resonance or a limit cycle driven by the inherent stochastic forcing from the turbulent combustion noise. The experimental results corroborated the analytic finding: the Rayleigh index is found to be positive for all frequencies and all operating conditions.  相似文献   

13.
The dynamics of spray swirling flames is investigated by combining experiments on a single sector generic combustor and large eddy simulations of the same configuration. Measurements and calculations correspond to a self-sustained limit cycle operation where combustion coupled by an axial quarter wave acoustic mode induces large amplitude oscillations of pressure in the system. A detailed analysis of the mechanisms controlling the process is carried out first by comparing the measured and calculated spray and flame dynamics. Considering in a second stage that the spray and flame are compact with respect to the acoustic wavelength the analysis can be simplified by defining state variables that are obtained by taking averages over the combustor cross section and representing the behavior of these average quantities as a function of the axial coordinate and time. This reveals a first region in which essentially convective processes prevail. The convective heat release rate then couples further downstream with the pressure field giving rise to positive Rayleigh source terms which feed energy in the axial acoustic mode. In the convective region, the swirl number features oscillations around its mean value with an impact on the flow aerodynamics and flame radial displacement. Fluctuations in the fuel flow rate are initiated at the injector exhaust and likewise convected downstream. The total mass flow rate that exhibits strong convective disturbances is dominated further downstream by the acoustic motion. This information provides new insights on the convective-acoustic coupling that controls the heat release rate disturbances and reveals the time delays governing the combustion oscillation process.  相似文献   

14.
Currently, gas turbine manufacturers frequently face the problem of strong acoustic combustion driven oscillations inside combustion chambers. These combustion instabilities can cause extensive wear and sometimes even catastrophic damages to combustion hardware. This requires prevention of combustion instabilities, which, in turn, requires reliable and fast predictive tools. This work presents a three-step method to find stability margins within which gas turbines can be operated without going into self-excited pressure oscillations. As a first step, a set of unsteady Reynolds-averaged Navier–Stokes simulations with the Flame Speed Closure (FSC) model implemented in the OpenFOAM® environment are performed to obtain the flame describing function of the combustor set-up. The standard FSC model is extended in this work to take into account the combined effect of strain and heat losses on the flame. As a second step, a linear three-time-lag-distributed model for a perfectly premixed swirl-stabilized flame is extended to the nonlinear regime. The factors causing changes in the model parameters when applying high-amplitude velocity perturbations are analysed. As a third step, time-domain simulations employing a low-order network model implemented in Simulink® are performed. In this work, the proposed method is applied to a laboratory test rig. The proposed method permits not only the unsteady frequencies of acoustic oscillations to be computed, but the amplitudes of such oscillations as well. Knowing the amplitudes of unstable pressure oscillations, it is possible to determine how these oscillations are harmful to the combustor equipment. The proposed method has a low cost because it does not require any license for computational fluid dynamics software.  相似文献   

15.
Violent folding of a flame front in a flame-acoustic resonance   总被引:1,自引:0,他引:1  
The first direct numerical simulations of violent flame folding because of the flame-acoustic resonance are performed. Flame propagates in a tube from an open end to a closed one. Acoustic amplitude becomes extremely large when the acoustic mode between the flame and the closed tube end comes in resonance with intrinsic flame oscillations. The acoustic oscillations produce an effective acceleration field at the flame front leading to a strong Rayleigh-Taylor instability during every second half period of the oscillations. The Rayleigh-Taylor instability makes the flame front strongly corrugated with elongated jets of heavy fuel mixture penetrating the burnt gas and even with pockets of unburned matter separated from the flame front.  相似文献   

16.
In this work, the influence of azimuthal staging concepts on the thermoacoustic behavior of annular combustion chambers is assessed theoretically and numerically. Staging is a well-known and effective method to abate thermoacoustic pulsations in combustion chambers. However, in the case of, for example, fuel staging the associated inhomogeneity of equivalence ratio may result in increased levels of NOx emissions. In order to minimize this unwanted effect a staging concept is required in which the transfer functions of the burners are changed while affecting the equivalence ratio as little as possible. In order to achieve this goal, a theoretical framework for predicting the influence of staging concepts on pulsations has been developed. Both linear and nonlinear analytical approaches are presented and it is shown that the dynamics of azimuthal modes can be described by coupled Van der Pol oscillators. A criterion based on the thermoacoustic coupling strength and on the asymmetry degree provides the modal behavior in the annular combustor, i.e. standing or traveling waves. The model predictions have been verified by numerical simulations of a heavy-duty gas turbine using an in-house thermoacoustic network-modeling tool. The interaction between the heat release of the flame and the acoustic field was modeled using measured transfer functions and source terms. These numerical simulations confirmed the original theoretical considerations.  相似文献   

17.
This work presents measurements of acoustically driven flame dynamics in a 42-element, cryogenic oxygen-hydrogen rocket thrust chamber under supercritical injection conditions. The experiment shows self-excited combustion instabilities for certain operating conditions, and this work describes the nature of the flame dynamics driving the acoustic field, as far as it can be ascertained from state-of-the-art optical measurements. Optical access has been realized in the combustion chamber with both fibre-optical probes and a viewing window. The probes collect point-like measurements of filtered OH* radiation. Their signals were used to calculate the gain and phase of intensity oscillations with respect to acoustic pressure for both stable and unstable operating conditions. Through the window, synchronized high-speed imaging of the flame in filtered OH* and blue radiation wavelengths was collected. The 2D flame response was related to the local acoustic pressure to investigate the distributed intensity and phase relationships. The flame response from OH* measurements is in agreement with the theory of Rayleigh. For stable conditions the oscillations of combustion and pressure were out of phase, whereas for an excited chamber 1T mode the oscillations were closely in phase. The integrated Rayleigh index from blue imaging was not consistent with the OH* results. The reason lies in the depth of field captured by this type of imaging, and must be used in a complementary fashion together with OH* imaging. The flame response values and 2D visualization presented in this work are expected to be of value for the validation of numerical modelling of combustion instabilities.  相似文献   

18.
Quasi-periodic bursts of acoustic oscillations were observed during the start-up process in a looped-tube thermoacoustic engine. The acoustic oscillations have a constant frequency of 111 Hz, while the bursts have "quasi-periods" in the order of 14-25 s. The quasi-periodic bursts show a new mode of amplitude growth in this thermoacoustic engine. The envelope of the acoustic oscillations has a fishbone-like shape. The nature of the observed fishbone-like instabilities suggests a strong interaction between the acoustic and temperature field.  相似文献   

19.
Annular combustion chambers of gas turbines and aircraft engines are subject to unstable azimuthal thermoacoustic modes leading to high amplitude acoustic waves propagating in the azimuthal direction. For certain operating conditions, the propagating direction of the wave switches randomly. The strong turbulent noise prevailing in gas turbine combustors is a source of random excitation for the thermoacoustic modes and can be the cause of these switching events. A low-order model is proposed to describe qualitatively this property of the dynamics of thermoacoustic azimuthal modes. This model is based on the acoustic wave equation with a destabilizing thermoacoustic source term to account for the flame’s response and a stochastic term to account for the turbulent combustion noise. Slow-flow averaging is applied to describe the modal dynamics on times scales that are slower than the acoustic pulsation. Under certain conditions, the model reduces formally to a Fokker-Planck equation describing a stochastic diffusion process in a potential landscape with two symmetric wells: One well corresponds to a mode propagating in the clockwise direction, the other well corresponds to a mode propagating in the anticlockwise direction. When the level of turbulent noise is sufficient, the stochastic force makes the mode jump from one well to the other at random times, reproducing the phenomenon of direction switching. Experiments were conducted on a laboratory scale annular combustor featuring 12 hydrogen-methan flames. System identification techniques were used to fit the model on the experimental data, allowing to extract the potential shape and the intensity of the stochastic excitation. The statistical predictions obtained from the Fokker–Planck equation on the mode’s behaviour and the direction switching time are in good agreement with the experiments.  相似文献   

20.
Large-Eddy Simulations were performed to study the flashback-induced flame shape transition of a lean premixed M flame in a staged liquid-fuelled aeronautical lean-burner, as observed experimentally. The BIMER combustor is a Lean Premixed Prevapourised (LPP) burner composed of two stages, each with its own injector and swirler: the main outer stage, called multipoint, uses jet-in-crossflow injection to achieve the LPP regime, while the central stage, called pilot, uses a pressure swirl injector to create a hollow cone spray to stabilise the flame. During LPP operation, this M flame presents a strong acoustic activity, promoting a periodic flashback of its leading edge. When, aiming to stabilise the flame, the pilot injection is increased and the multipoint injection decreased, the oscillating leading edge (due to the longitudinal acoustic perturbations) attaches to the pilot spray, changing the flame into a Tulip shape. Two phenomena were identified as being the most relevant causes of this flame shape transition. First, the leading edge position and the thermoacoustic instability amplitude are directly linked to the combustion chamber final temperature. The higher the temperature in the chamber, the more upstream the leading edge stabilises, and the higher the acoustic oscillation amplitude, both increasing the risk of a successful flashback. Second, the injection regime with high pilot injection allows the leading edge to attach to the pilot spray, as the flame only transitions when the pilot spray is sufficiently high. The higher the pilot fuel flow, the higher the amount of fuel sprayed in the critical region where the flame might attach for a transition to the Tulip shape. Therefore, as the change in injection regime is the main mechanism lean staged burners use to reduce emissions while increasing operability, this works shows that an M flame is unsuitable to such burners with similar aerodynamic topology and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号