首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical representation of a random process with independent increments in some space (random walks introduced by Pearson) is considered. The law of random walk distribution in space is derived from the general representation of stochastic elementary hops (distribution law of hop probability) using Kadanoff’s concept of the unit increment as one hop. For limited hop laws and laws of hop distributions with all moments there naturally arises Chandrasekhar’s result that describes ordinary physical diffusion. For laws of hop distributions without the second and highest moments there also arise known Lévy walks (flights) sometimes treated as superdiffusion. For the intermediate case, where the distributions of hops have at least the second moment and not all finite moments (these hops are sometimes called truncated Lévy walks), the asymptotic form of the random walk distribution was obtained for the first time. The results obtained are compared with the experimental laws known in econophysics. Satisfactory agreement is observed between the developed theory and the empirical data for insufficiently studied truncated Lévy walks.  相似文献   

2.
Discrete-time random walks simulate diffusion if the single-step probability density function (jump distribution) generating the walk is sufficiently shortranged. In contrast, walks with long-ranged jump distributions considered in this paper simulate Lévy or stable processes. A one-dimensional walk with a selfsimilar jump distribution (the Weierstrass random walk) and its higherdimensional generalizations generate fractal trajectories if certain transience criteria are met and lead to simple analogs of deep results on the Hausdorff-Besicovitch dimension of stable processes. The Weierstrass random walk is lacunary (has gaps in the set of allowed steps) and its characteristic function is Weierstrass' non-differentiable function. Other lacunary random walks with characteristic functions related to Riemann's zeta function and certain numbertheoretic functions have very interesting analytic structure.  相似文献   

3.
Coupled continuous time random walks (CTRWs) model normal and anomalous diffusion of random walkers by taking the sum of random jump lengths dependent on the random waiting times immediately preceding each jump. They are used to simulate diffusion-like processes in econophysics such as stock market fluctuations, where jumps represent financial market microstructure like log returns. In this and many other applications, the magnitude of the largest observations (e.g. a stock market crash) is of considerable importance in quantifying risk. We use a stochastic process called a coupled continuous time random maxima (CTRM) to determine the density governing the maximum jump length of a particle undergoing a CTRW. CTRM are similar to continuous time random walks but track maxima instead of sums. The many ways in which observations can depend on waiting times can produce an equally large number of CTRM governing density shapes. We compare densities governing coupled CTRM with their uncoupled counterparts for three simple observation/wait dependence structures.  相似文献   

4.
We develop asymptotic results for the two-state random walk, which can be regarded as a generalization of the continuous-time random walk. The two-state random walk is one in which a particle can be in one of two states for random periods of time, each of the states having different spatial transition probabilities. When the sojourn times in each of the states and the second moments of transition probabilities are finite, the state probabilities have an asymptotic Gaussian form. Several known asymptotic results are reproduced, such as the Gaussian form for the probability density of position in continuous-time random walks, the time spent in one of these states, and the diffusion constant of a two-state diffusing particle.  相似文献   

5.
A calculation is presented of the long-time behavior of various random walk properties (moments, probability of return to the origin, expected number of distinct sites visited) formultistate random walks on periodic lattices. In particular, we consider inhomogeneous periodic lattices, consisting of a periodically repeated unit cell which contains a finite number of internal states (sites). The results are identical to those for perfect lattices except for a renormalization of coefficients. For walks without drift, it is found that all the asymptotic random walk properties are determined by the diffusion coefficients for the multistate random walk. The diffusion coefficients can be obtained by a simple matrix algorithm presented here. Both discrete and continuous time random walks are considered. The results are not restricted to nearest-neighbor random walks but apply as long as the single-step probability distributions associated with each of the internal states have finite means and variances.  相似文献   

6.
Szász and Telcs (J. Stat. Phys. 26(3), 1981) have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if d≥2. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of Szász and Telcs (J. Stat. Phys. 26(3), 1981) to unbounded random walks whose jump distribution belongs to the domain of attraction of the normal law. We do this first: for diffusively scaled random walks on Z d (d≥2) having finite variance; and second: for random walks with distribution belonging to the non-normal domain of attraction of the normal law. This result can be applied to random walks with tail behavior analogous to that of the infinite horizon Lorentz-process; these, in particular, have infinite variance, and convergence to Brownian motion holds with the superdiffusive \(\sqrt{n\log n}\) scaling.  相似文献   

7.
The generalized correlation approach, which has been successfully used in statistical radio physics to describe non-Gaussian random processes, is proposed to describe stochastic financial processes. The generalized correlation approach has been used to describe a non-Gaussian random walk with independent, identically distributed increments in the general case, and high-order correlations have been investigated. The cumulants of an asymmetrically truncated Levy distribution have been found. The behaviors of asymmetrically truncated Levy flight, as a particular case of a random walk, are considered. It is shown that, in the Levy regime, high-order correlations between values of asymmetrically truncated Levy flight exist. The source of high-order correlations is the non-Gaussianity of the increments: the increment skewness generates threefold correlation, and the increment kurtosis generates fourfold correlation.  相似文献   

8.
A computationally challenging and open problem is how to efficiently generate equilibrated samples of conditioned walks. We present here a general stochastic approach that allows one to produce these samples with their correct statistical weight and without rejections. The method is illustrated for a jump process conditioned to evolve within a cylindrical channel and forced to reach one of its ends. We obtain analytically the exact probability density function of the jumps and offer a direct method for gathering equilibrated samples of a random walk conditioned to stay in a channel with suitable boundary conditions. Unbiased walks of arbitrary length can thus be generated with linear computational complexity—even when the channel width is much smaller than the typical bond length of the unconditioned walk. By profiling the metric properties of the generated walks for various bond lengths we characterize the crossover between weak and strong confinement regimes with great detail.  相似文献   

9.
In this paper we derive Langevin picture of Lévy walks. Applying recent advances in the theory of coupled continuous time random walks we find a limiting process of the properly scaled Lévy walk. Next, we introduce extensions of Levy walks, in which jump sizes are some functions of waiting times. We prove that under proper scaling conditions, such generalized Lévy walks converge in distribution to the appropriate limiting processes. We also derive the corresponding fractional diffusion equations and investigate behavior of the mean square displacements of the limiting processes, showing that different coupling functions lead to various types of anomalous diffusion.  相似文献   

10.
We consider the limit distributions of open quantum random walks on one-dimensional lattice space. We introduce a dual process to the original quantum walk process, which is quite similar to the relation of Schrödinger-Heisenberg representation in quantum mechanics. By this, we can compute the distribution of the open quantum random walks concretely for many examples and thereby we can also obtain the limit distributions of them. In particular, it is possible to get rid of the initial state when we consider the evolution of the walk, it appears only in the last step of the computation.  相似文献   

11.
We provide a systematic analysis of the possible asymptotic distributions o one-dimensional continuous-time random walks (CTRWs) by applying the limit theorems of probability theory. Biased and unbiased walks of coupled and decoupled memory are considered. In contrast to previous work concerning decoupled memory and Lévy walks, we deal also with arbitrary coupled memory and with jump densities asymmetric about its mean, obtaining asymmetric Lévy-stable limits. Suprisingly, it is found that in most cases coupled memory has no essential influence on the form of the limiting distribution. We discuss interesting properties of walks with an infinite mean waiting time between successive jumps.  相似文献   

12.
The spans of ann-step random walk on a simple cubic lattice are the sides of the smallest rectangular box, with sides parallel to the coordinate axes, that contains the random walk. Daniels first developed the theory in outline and derived results for the simple random walk on a line. We show that the development of a more general asymptotic theory is facilitated by introducing the spectral representation of step probabilities. This allows us to consider the probability density for spans of random walks in which all moments of single steps may be infinite. The theory can also be extended to continuous-time random walks. We also show that the use of Abelian summation simplifies calculation of the moments. In particular we derive expressions for the span distributions of random walks (in one dimension) with single step transition probabilities of the formP(j) 1/j 1+, where 0<<2. We also derive results for continuous-time random walks in which the expected time between steps may be infinite.  相似文献   

13.
14.
We show that sample paths of Brownian motion (and other stable processes) intersect the same sets as certain random Cantor sets constructed by a branching process. With this approach, the classical result that two independent Brownian paths in four dimensions do not intersect reduces to the dying out of a critical branching process, and estimates due to Lawler (1982) for the long-range intersection probability of several random walk paths, reduce to Kolmogrov's 1938 law for the lifetime of a critical branching process. Extensions to random walks with long jumps and applications to Hausdorff dimension are also derived.  相似文献   

15.
We investigate the probability distribution of the quantum walk under coherence non-generating channels. We definea model called generalized classical walk with memory. Under certain conditions, generalized classical random walk withmemory can degrade into classical random walk and classical random walk with memory. Based on its various spreadingspeed, the model may be a useful tool for building algorithms. Furthermore, the model may be useful for measuring thequantumness of quantum walk. The probability distributions of quantum walks are generalized classical random walkswith memory under a class of coherence non-generating channels. Therefore, we can simulate classical random walkand classical random walk with memory by coherence non-generating channels. Also, we find that for another class ofcoherence non-generating channels, the probability distributions are influenced by the coherence in the initial state of thecoin. Nevertheless, the influence degrades as the number of steps increases. Our results could be helpful to explore therelationship between coherence and quantum walk.  相似文献   

16.
A restricted random walk on ad-dimensional cubic lattice with different probabilities for forward, backward, and sideward steps is studied. The analytic solution for the generating function, exact expressions for the second and fourth moments of displacements, and diffusion and Burnett coefficients are given, as well as a systematic asymptotic expansion for the probability distribution of long walks.This paper is dedicated to Nico van Kampen.  相似文献   

17.
We analyze a special class of 1-D quantum walks (QWs) realized using optical multi-ports. We assume non-perfect multi-ports showing errors in the connectivity, i.e. with a small probability the multi-ports can connect not to their nearest neighbor but to another multi-port at a fixed distance – we call this a jump. We study two cases of QW with jumps where multiple displacements can emerge at one timestep. The first case assumes time-correlated jumps (static disorder). In the second case, we choose the positions of jumps randomly in time (dynamic disorder). The probability distributions of position of the QW walker in both instances differ significantly: dynamic disorder leads to a Gaussian-like distribution, while for static disorder we find two distinct behaviors depending on the parity of jump size. In the case of even-sized jumps, the distribution exhibits a three-peak profile around the position of the initial excitation, whereas the probability distribution in the odd case follows a Laplace-like discrete distribution modulated by additional (exponential) peaks for long times. Finally, our numerical results indicate that by an appropriate mapping a universal functional behavior of the variance of the long-time probability distribution can be revealed with respect to the scaled average of jump size.  相似文献   

18.
We perform simulations for one dimensional continuous-time random walks in two dynamic random environments with fast (independent spin-flips) and slow (simple symmetric exclusion) decay of space-time correlations, respectively. We focus on the asymptotic speeds and the scaling limits of such random walks. We observe different behaviors depending on the dynamics of the underlying random environment and the ratio between the jump rate of the random walk and the one of the environment. We compare our data with well known results for static random environment. We observe that the non-diffusive regime known so far only for the static case can occur in the dynamical setup too. Such anomalous fluctuations give rise to a new phase diagram. Further we discuss possible consequences for more general static and dynamic random environments.  相似文献   

19.
We derive the probability density for a simple measure of the asymmetry of a one-dimensional random walk, namely the ratio of the minimum of the two maximum displacements in the positive and negative directions, to the maximum. We show that in the diffusion limit the asymmetry is independent of time. These results are shown to apply to random walks in which individual steps have a stable law distribution as well as to multidimensional random walks.  相似文献   

20.
The influence of the potential energy surface on the nucleon exchange mechanism is studied without solving a Fokker-Planck equation. Instead, this mechanism is treated explicitely as a sequence of random walk transfers. Simple expressions for the first and second moments of mass and charge distributions are derived analytically. Inversely, it is shown that it is possible to extract the number of exchanged protons and neutrons from experimental data. This procedure is used to gain new informations on the reaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号