首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Unsteady gravity-driven flow of a thin slender rivulet of a non-Newtonian power-law fluid on a plane inclined at an angle α to the horizontal is considered. Unsteady similarity solutions are obtained for both converging sessile rivulets (when 0 < α < π/2) in the case x < 0 with t < 0, and diverging pendent rivulets (when π/2 < α < π) in the case x > 0 with t > 0, where x denotes a coordinate measured down the plane and t denotes time. Numerical and asymptotic methods are used to show that for each value of the power-law index N there are two physically realisable solutions, with cross-sectional profiles that are ‘single-humped’ and ‘double-humped’, respectively. Each solution predicts that at any time t the rivulet widens or narrows according to |x | (2N+1)/2(N+1) and thickens or thins according to |x | N/(N+1) as it flows down the plane; moreover, at any station x, it widens or narrows according to |t | ?N/2(N+1) and thickens or thins according to |t | ?N/(N+1). The length of a truncated rivulet of fixed volume is found to behave according to |t | N/(2N+1).  相似文献   

2.
The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re = 100, 250 and 300, non-dimensional rotational rates Ω1 = 0–1 and rotation axis angles α = 0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx, CLy) and (CD, CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re = 300 and Ω1 = 0.05, the phase diagrams (CLx, CLy) show ‘saw tooth’ patterns for both α = 0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re  800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω1 increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.  相似文献   

3.
Oscillating boundary layer flow over an infinite flat plate at rest was simulated using the kkLω turbulence model for a Reynolds number range of 32  Reδ  10,000 ranging from fully laminar flow to fully turbulent flow. The kkLω model was validated by comparing the predictions with LES results and experimental results for intermittently turbulent and fully turbulent flow regimes. The good agreement obtained between the kkLω model prediction with the experimental and LES results indicate that the kkLω model is able to accurately simulate transient intermittently turbulent flow and as well as accurately predict the onset of turbulence for such oscillatory flows.  相似文献   

4.
A downward flow of glass bead particles in a vertical pipe is investigated using a two-component LDV/PDPA for a range of Re (6400 < Re < 24,000) and a constant particle loading (m = 0.7). Two particle sizes of 70 and 200 μm are considered in the present work. For the 70 μm particles, the presence of the particles dampens the gas-phase turbulence intensity at the lowest value of Re investigated (8300) compared with the single-phase flow at the same Re. As Re increases, the gas turbulence increases, and for Re > 13,800 the gas turbulence is enhanced compared with the single-phase flow at the same Re. For the 200 μm particles, the intensity also increases with Re and is enhanced for all values of Re investigated, except at the lowest value of Re investigated (6400). At this value, the gas turbulence is equal to that of single-phase flow at the same Re. The observed trend in the gas-phase turbulence modulation with Re is proposed to be due to the change in the segregation patterns and in the average volume fractions of the particles with increasing Re. More importantly, the present experimental results suggest that, consideration of either the gas and particle characteristic length scales or the particle Reynolds number solely is insufficient to predict gas-phase turbulence modulation in gas–particle flows.  相似文献   

5.
Pressure drops in the flow through micro-orifices and capillaries were measured for silicone oils, aqueous solutions of polyethylene glycol (PEG), and surfactant aqueous solutions. The diameter of micro-orifices ranged from 5 μm to 400 μm. The corresponding length/diameter ratio was from 4 to 0.05 and capillary diameters were 105 μm and 450 μm. The following results were obtained: silicone oils of 10?6 m2/s and 10?5 m2/s in kinematic viscosity generated a reduction of pressure drop (RPD), that is, drag reduction, similar to the RPD of water and a glycerol/water mixture reported in the previous paper by the present authors. When RPD occurred, the pressure drop (PD) of silicone oils of 10?6 m2/s and 10?5 m2/s had nearly the same magnitude. Namely, the difference in viscosity did not influence RPD. A 103 ppm aqueous solution of PEG20000 provided almost the same PD as that of PEG8000 for the 400 μm to 15 μm orifices, but a greater PD than that of PEG8000 for the 10 μm to 5 μm orifices. A non-ionic surfactant and a cationic surfactant were highly effective in RPD compared with anionic surfactants: the non-ionic and cationic surfactant solutions had PD one order of magnitude lower than that of water under some flow conditions in the concentration range from 1 ppm to 104 ppm, but the anionic surfactant solutions did not generate RPD except in the case of the smallest orifice of 5 μm in diameter. The PD of the non-ionic surfactant solution showed a steep rise at a Reynolds number (Ret) for 400 μm to 15 μm orifices. The Ret provides the relationship Ret = K/D, where D is the orifice diameter, and K is a constant of 2 × 10?2 m for the 100–20 μm orifices irrespective of liquid concentration. Capillary flow experiment revealed that the PEG, non-ionic and cationic surfactant solutions generated RPD also in a laminar flow through the capillary of 105 μm in diameter, but not in the flow through the capillary of 450 μm in diameter. In order to clarify the cause of RPD, an additional experiment was carried out by changing the orifice material from metal to acrylic resin. The result gave a different appearance of RPD, suggesting that RPD is related to an interfacial phenomenon between the liquid and wall. The large RPDs found in the present experiment are very interesting from both academic and practical viewpoints.  相似文献   

6.
In this paper, we studied the convective heat transfer from a stream-wise oscillating circular cylinder. Two dimensional numerical simulations are conducted at Re = 100–200, A = 0.1–0.4 and F = fo/fs = 0.2–3.0 with the aid of the lattice Boltzmann method. In particular, detailed attentions are paid on the extensive numerical results elucidating the influence of oscillation frequency, oscillation amplitude and Reynolds number on the time-average and RMS value of the Nusselt number. Over the ranges of conditions considered herein, the heat transfer characteristics are observed to be influenced in an intricate manner by the value of the oscillation frequency (F), oscillation amplitude (A) and Reynolds number (Re). Firstly, the heat transfer is enhanced when the cylinder oscillates stream-wise with small amplitude and low frequency, while it will be reduced by large amplitude and high frequency. Secondly, the average Nusselt number (Nu (ave)) decreases against the increasing value of oscillation frequency, while the RMS value of the Nusselt number, Nu (RMS), displays an opposite trend. Third, we obtained a similar frequency effect on the heat transfer over the range of Reynolds numbers investigated in this paper. In addition, detailed analyses on phase portraits, energy spectrum are also made.  相似文献   

7.
The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, LU, which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, LCH, or by a constant turbulence on the centerline, with length LCT. The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has a length LCH which increases from LCH = H at Re = 35,300 to LCH = 45H at Re = 2200. The PIV measurements on the centerline of the jet show that turbulence remains constant at the level of the exit for a length, LCT, which increases from LCT = H at Re = 35,300 to LCT = 45H at Re = 2200. The PIV measurements show that velocity remains constant at the exit level for a length, LU, which increases from LU = H at Re = 35,300 to LU = 6H at Re = 2200 and is called undisturbed region of flow. In turbulent flow the length LU is almost equal to the lengths of the regions of constant height, LCH, and constant turbulence, LCT. In laminar flow, Re = 2200, the length of the undisturbed region of flow, LU, is greater than the lengths of the regions of constant height and turbulence, LCT = LCH = 45H. The average PIV and HFA velocity measurements confirm that the length of potential core, LP, increases from LP = 45H at Re = 35,300 to LP = 78H at Re = 2200, and are compared to the previous experimental and theoretical results of the literature in the zone of mixing fluid and in the fully developed region with a good agreement.  相似文献   

8.
The qualities of a DES (Detached Eddy Simulation) and a PANS (Partially-Averaged Navier–Stokes) hybrid RANS/LES model, both based on the kω RANS turbulence model of Wilcox (2008, “Formulation of the kω turbulence model revisited” AIAA J., 46: 2823–2838), are analysed for simulation of plane impinging jets at a high nozzle-plate distance (H/B = 10, Re = 13,500; H is nozzle-plate distance, B is slot width; Reynolds number based on slot width and maximum velocity at nozzle exit) and a low nozzle-plate distance (H/B = 4, Re = 20,000). The mean velocity field, fluctuating velocity components, Reynolds stresses and skin friction at the impingement plate are compared with experimental data and LES (Large Eddy Simulation) results. The kω DES model is a double substitution type, following Davidson and Peng (2003, “Hybrid LES–RANS modelling: a one-equation SGS model combined with a kω model for predicting recirculating flows” Int. J. Numer. Meth. Fluids, 43: 1003–1018). This means that the turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the eddy viscosity formula. The kω PANS model is derived following Girimaji (2006, “Partially-Averaged Navier–Stokes model for turbulence: a Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation bridging method” J. Appl. Mech., 73: 413–421). The turbulent length scale in the PANS model is constructed from the total turbulent kinetic energy and the sub-filter dissipation rate. Both hybrid models change between RANS (Reynolds-Averaged Navier–Stokes) and LES based on the cube root of the cell volume. The hybrid techniques, in contrast to RANS, are able to reproduce the turbulent flow dynamics in the shear layers of the impacting jet. The change from RANS to LES is much slower however for the PANS model than for the DES model on fine enough grids. This delays the break-up process of the vortices generated in the shear layers with as a consequence that the DES model produces better results than the PANS model.  相似文献   

9.
The goal of this work is a systematic presentation of some classes of mixed weak formulations, for general multi-dimensional dipolar gradient elasticity (fourth order) boundary value problems. The displacement field main variable is accompanied by the double stress tensor and the Cauchy stress tensor (case 1 or μ ? τ ? u formulation), the double stress tensor alone (case 2 or μ ? u formulation), the double stress, the Cauchy stress, the displacement second gradient and the standard strain field (case 3 or μ ? τ ? κ ? ε ? u formulation) and the displacement first gradient, along with the equilibrium stress (case 4 or u ? θ ? γ formulation). In all formulations, the respective essential conditions are built in the structure of the solution spaces. For cases 1, 2 and 4, one-dimensional analogues are presented for the purpose of numerical comparison. Moreover, the standard Galerkin formulation is depicted. It is noted that the standard Galerkin weak form demands C1-continuous conforming basis functions. On the other hand, up to first order derivatives appear in the bilinear forms of the current mixed formulations. Hence, standard C0-continuous conforming basis functions may be employed in the finite element approximations. The main purpose of this work is to provide a reference base for future numerical applications of this type of mixed methods. In all cases, the associated quadratic energy functionals are formed for the purpose of completeness.  相似文献   

10.
Internal gas velocity fluctuations and their effects on the mist diffusion process were examined in a long horizontal pipe to understand oil mist transportation, particularly in the laminar-to-turbulent flow transition region. Three hot-wire anemometers and aerosol concentration monitors were used to deduce these effects as the two-phase mist flow gradually developed in the stream-wise direction. We found significant axial mist diffusion at Reynolds numbers (Re) < 1000 because of passive scalar transport by Poiseuille flow. However, this diffusion was restricted by the non-zero inertia of the mist at a Stokes number, O(10−5), relying on the Brownian motion of the mist. At Re > 2400, a sharp mist waveform was maintained by a turbulent flow with active radial mixing. New data were obtained within the range of 1000 < Re < 2400, which cannot be explained by interpolation between the above-mentioned two states. The mist concentration displays multiple temporal peaks at Re < 2000 owing to perturbations of localized turbulence as well as radial anisotropy as being conveyed more than 2000-diameters in distance. This behavior is caused by intermittent disturbances induced by the pipe wall roughness, which sharply distorts the wall-aligned laminar mist layer left by parabolic axial stretching of local laminar flow.  相似文献   

11.
Multi-fluid flows are frequently thought of as being less stable than single phase flows. Consideration of different non-Newtonian models can give rise to different types of hydrodynamic instability. Here we show that with careful choice of fluid rheologies and flow paradigm, one can achieve multi-layer flows that are linearly stable for Re = ∞. The basic methodology consists of two steps. First we eliminate interfacial instabilities by using a yield stress fluid in one fluid layer and ensuring that for the base flow configurations studied we maintain an unyielded plug region at the interface. Secondly we eliminate linear shear instabilities by ensuring a strong enough Couette component in the second fluid layer, imposed via the moving interface. We show that this technique can be applied to both shear-thinning and visco-elastic fluids.  相似文献   

12.
13.
The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied experimentally using particle image velocimetry (PIV). Cylinders and prisms with aspect ratios of AR = 9, 7, 5, and 3 were tested at a Reynolds number of Re = 4.2 × 104. The bodies were mounted normal to a ground plane and were partially immersed in a turbulent zero-pressure-gradient boundary layer, where the boundary layer thickness relative to the body width was δ/D = 1.6. PIV measurements were made above the free ends of the bodies in a vertical plane aligned with the flow centreline. The present PIV results provide insight into the effects of aspect ratio and body shape on the instantaneous flow field. The recirculation zone under the separated shear layer is larger for the square prism of AR = 3 compared to the more slender prism of AR = 9. Also, for a square prism with low aspect ratio (AR = 3), the influence of the reverse flow over the free end surface becomes more significant compared to that for a higher aspect ratio (AR = 9). For the circular cylinder, a cross-stream vortex forms within the recirculation zone. As the aspect ratio of the cylinder decreases, the reattachment point of the separated flow on the free end surface moves closer to the trailing edge. For both the square prism and circular cylinder cases, the instantaneous velocity vector field and associated in-plane vorticity field revealed small-scale structures mostly generated by the separated shear layer.  相似文献   

14.
We present results from direct numerical simulation of turbulent heat transfer in pipe flow at a bulk flow Reynolds number of 5000 and Prandtl numbers ranging from 0.025 to 2.0 in order to examine the effect of streamwise pipe length (πδ  πD/2 ? L ? 12πδ) on the convergence of thermal turbulence statistics. Various lower and higher order thermal statistics such as mean temperature, rms of fluctuating temperature, turbulent heat fluxes, two-point auto and cross-correlations, skewness and flatness were computed and it is found that the value of L required for convergence of the statistics depends on the Prandtl number: larger Prandtl numbers requires comparatively shorter pipe length for convergence of most of the thermal statistics.  相似文献   

15.
An experimental study was conducted to investigate the effect of bottom wall heating on the flow structure inside a horizontal square channel at low Reynolds numbers (Re) and high Grashof numbers (Gr). The flow field was found to be complex and three-dimensional due to the interactions of buoyancy-induced rising plumes of warm fluid, falling parcels of cold fluid and the shear flow. The mean streamwise velocity profiles were altered by bottom wall heating; and back flow was induced in the upper half of the channel when Gr/Re2 > 55. The bottom wall temperatures were found to have more significant influence on the turbulent velocity magnitudes than the flow rate. The Reynolds stress became negative in the channel core region indicating the momentum transfer from the turbulent velocity field to the buoyancy field. The POD analysis revealed the presence of convective cells primarily in the lower half of the channel.  相似文献   

16.
Flow control using zero-net-mass-flow jets in an S-shaped diffusing duct was investigated. Experiments were conducted in a channel flow facility at a Reynolds number, Re = 4.1 × 104 with particle image velocimetry measurements in the symmetry plane of the duct. In the natural configuration, separation of the boundary layer occurs in a region of the duct with an high degree of curvature. A stability analysis of the wall normal base flow at the location of the applied control is presented and estimates the most effective frequency of the actuator. Time-averaged velocity fields show total reattachment of the boundary layer using active flow control.  相似文献   

17.
The velocity field and the adequate shear stress corresponding to the flow of a generalized Burgers’ fluid model, between two infinite co-axial cylinders, are determined by means of Laplace and finite Hankel transforms. The motion is due to the inner cylinder that applies a time dependent torsional shear to the fluid. The solutions that have been obtained, presented in series form in terms of usual Bessel functions J1( ? ), J2( ? ), Y1( ? ) and Y2( ? ), satisfy all imposed initial and boundary conditions. Moreover, the corresponding solutions for Burgers’, Oldroyd-B, Maxwell, second grade, Newtonian fluids and large-time transient solutions for generalized Burgers’ fluid are also obtained as special cases of the present general solutions. The effect of various parameters on large-time and transient solutions of generalized Burgers’ fluid is also discussed. Furthermore, for small values of the material parameters, λ2 and λ4 or λ1, λ2, λ3 and λ4, the general solutions corresponding to generalized Burgers’ fluids are going to those for Oldroyd-B and Newtonian fluids, respectively. Finally, the influence of the pertinent parameters on the fluid motion, as well as a comparison between models, is shown by graphical illustrations.  相似文献   

18.
The steady flow of generalized Newtonian fluid in a two-dimensional 1:3 sudden expansion was studied numerically. Finite volume method was applied to solve the momentum equations along with the continuity equation and the Power law rheological model within the laminar flow regime for a range of Reynolds number and Power law index values. The values of generalized Reynolds number, based on physical and rheological properties, upstream channel height and bulk velocity, were varied between 0.0001  Regen  10, while the Power law index values mapped the 0.60  n  1.40 range, allowing for the investigation of both shear-thinning and shear-thickening effects at creeping as well as slowly moving fluid flow conditions. We report accurate results of a systematic study with a focus on most important characteristics of recirculating fluid flow in the downstream section of sudden expansion geometry. It is shown that for the creeping flow regime there exist finite sized redevelopment length, extra pressure drop (Couette correction) and recirculation zones (also called as Moffatt vortices) that are influenced by the non-Newtonian viscous behaviour.  相似文献   

19.
The effect of solid particles on the flow characteristics of axisymmetric turbulent coaxial jets for two flow conditions was studied. Simultaneous measurements of size and velocity distributions of continuous and dispersed phases in a two-phase flow are presented using a Phase Doppler Anemometry (PDA) technique. Spherical glass particles with a particle diameter range from 102 to 212 μm were used in this two-phase flow, the experimental results indicate a significant influence of the solid particles and the Re on the flow characteristics. The data show that the gas phase has lower mean velocity in the near-injector region and a higher mean velocity at the developed region. Near the injector at low Reynolds number (Re = 2839) the presence of the particles dampens the gas-phase turbulence, while at higher Reynolds number (Re = 11 893) the gas-phase turbulence and the velocity fluctuation of particle-laden jets are increased. The particle velocity at higher Reynolds number (Re = 11 893) and is lower at lower Reynolds number (Re = 2839). The slip velocity between particles and gas phase existed over the flow domain was examined. More importantly, the present experiment results suggest that, consideration of the gas characteristic length scales is insufficient to predict gas-phase turbulence modulation in gas-particle flows.  相似文献   

20.
Vortex structures and heat transfer enhancement mechanism of turbulent flow over a staggered array of dimples in a narrow channel have been investigated using Large Eddy Simulation (LES), Laser Doppler Velocimetry (LDV) and pressure measurements for Reynolds numbers ReH = 6521 and ReH = 13,042.The flow and temperature fields are calculated by LES using dynamic mixed model applied both for the velocity and temperature. Simulations have been validated with experimental data obtained for smooth and dimpled channels and empiric correlations. The flow structures determined by LES inside the dimple are chaotic and consist of small eddies with a broad range of scales where coherent structures are hardly to detect. Proper Orthogonal Decomposition (POD) method is applied on resolved LES fields of pressure and velocity to identify spatial–temporal structures hidden in the random fluctuations. For both Reynolds numbers it was found that the dimple package with a depth h to diameter D ratio of h/D = 0.26 provides the maximum thermo-hydraulic performance. The heat transfer rate could be enhanced up to 201% compared to a smooth channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号