首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cobalt oxide nanoparticles (Co3O4-NPs) were synthesized by aqueous extract of Artemisia vulgaris plant at 50°C. The biosynthesized extract mediated Co3O4-NPs were characterized through different methods containing FT-IR (Fourier transform infrared spectroscopy), FESEM (Field emission scanning electron microscopy), EDS (Energy-dispersive x-ray spectroscopy), and XRD (x-ray diffraction). Co3O4-NPs as an efficient and practical catalyst was employed for the electrochemical oxidation of formaldehyde; which was an irreversible charge transfer controlled by mass transfer. The coefficients of electron transfer and diffusion were 0.87 and 0.122 cm2/s for formaldehyde oxidation on Co3O4 electrode, respectively. The formation of the CoOOH species during potential sweeping appears to be involved in the catalytic activity of the Co3O4 toward formaldehyde oxidation.  相似文献   

2.
SrAl2O4:Eu2+, Dy3+ powders were synthesized by sol–gel–combustion process using metal nitrates as the source of metal ions and citric acid as a chelating agent of metal ions. The amounts of citric acid in mole were two times those of the metal ions. By tracing the formation process of the sol–gel, it is found that decreasing the amount of NO3 in the solution is necessary for the formation of transparent sol and gel, and the dropping of ethanol into the precursor solution can decrease the amount of NO3 in the solution. By combusting citrate sol at 600 °C, followed by heating the resultant combustion ash at 1,100–1,300 °C in a weak reductive atmosphere containing active carbon, SrAl2O4:Eu2+, Dy3+ phosphors can prepared. X-ray diffraction, Thermogravimetry–differential thermal analysis, scanning electron microscopy and fluorescence spectrophotometer were used to investigate the formation process and luminescent properties of the as-synthesized SrAl2O4:Eu2+, Dy3+. The results reveal that the SrAl2O4 crystallizes completely when the combustion ash was sintered at 1,200–1,300 °C. The excitation and emission spectra indicate that excitation broadband mainly lies in a visible range and the phosphors emit strong light at 510 nm under the excitation of 348 nm. The afterglow of phosphors lasts for over 10 h when the excited source is cut off.  相似文献   

3.
A novel approach is developed to synthesize Co3O4 nanoparticles utilizing sawdust as a bio-template. Sawdust was first infiltrated with cobalt dichloride aqueous solution, and then, in situ precipitation reaction took place when different precipitators (NaOH or H2C2O4) were added. Finally, the precursors, Co(OH)2 and CoC2O4, were calcined to produce the final Co3O4 nanoparticles and the template was removed simultaneously. The structure and morphology of the obtained products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The observations revealed the formation of cubic phase Co3O4 with the average diameter of about 40 and 60 nm, respectively. Their electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge–discharge tests. The highest specific capacitance of 289.7 F g−1 for the obtained Co3O4 electrode was obtained even at a discharge current of 20 mA after the 100th cycle and it increased by about 4% after the 1,000th cycle, demonstrating good electrochemical stability of such electrode materials.  相似文献   

4.
The thermal dehydration of La[Co(CN)6]⋅5H2O proceeded through at least three stages from the temperature range of30~230°C, and an abrupt mass loss occurred around 350°C and the perovskite type oxide,LaCoO3 was obtained at 1000°C. After dehydration, the color of the anhydride changed from white to pale blue around 230°C and furthermore, the color changed to blue around 290°C. These color changes were discussed on the basis of the changes of coordination structures around Co ions. In La[Co(CN)6]⋅5H2O, Co3+ ions lie at the center of the Oh crystal field consisted of six CN ions. However, in the pale blue specimen, Co3+ ions were situated in the center of D4h crystal field which was distorted the Oh one by lengthening of the trans CN ions along z-axis. In the blue specimen, Co3+ ions were reduced to Co2+ ions which were situated in the Td crystal field formed by four CNions as [Co(CN)4]2–. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
LiNi1/3Co1/3Mn1/3O2 cathode materials for the application of lithium ion batteries were synthesized by carbonate co-precipitation routine using different ammonium salt as a complexant. The structures and morphologies of the precursor [Ni1/3Co1/3Mn1/3]CO3 and LiNi1/3Co1/3Mn1/3O2 were investigated through X-ray diffraction, scanning electron microscope, and transmission electron microscopy. The electrochemical properties of LiNi1/3Co1/3Mn1/3O2 were examined using charge/discharge cycling and cyclic voltammogram tests. The results revealed that the microscopic structures, particle size distribution, and the morphology properties of the precursor and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 were primarily dependent on the complexant. Among all as-prepared LiNi1/3Co1/3Mn1/3O2 cathode materials, the sample prepared from Na2CO3–NH4HCO3 routine using NH4HCO3 as the complexant showed the smallest irreversible capacity of 19.5 mAh g−1 and highest discharge capacity of 178.4 mAh g−1 at the first cycle as well as stable cycling performance (98.7% of the initial capacity was retained after 50 cycles) at 0.1 C (20 mA g−1) in the voltage range of 2.5–4.4 V vs. Li+/Li. Moreover, it delivered high discharge capacity of over 135 mAh g−1 at 5 C (1,000 mA g−1).  相似文献   

6.
The effect of the lithium boron oxide glass coating on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 has been investigated via solution method. The morphology, structure, and electrochemical properties of the bare and coated LiNi1/3Co1/3Mn1/3O2 are characterized by scanning electron microscopy, X-ray diffraction, electrochemical impedance spectroscopy, and charge–discharge tests. The results showed that the lattice structure of LiNi1/3Co1/3Mn1/3O2 is not changed after coating. The coating sample shows good high-rate discharge performance (148 mAh g−1 at 5.0 C rate) and cycling stability even at high temperature (with the capacities retention about 99% and 87% at room and elevated temperature after 50 cycles). The Li+ diffusion coefficient is also largely improved, while the charge transfer resistance, side reactions within cell, and the erosion of Hydrofluoric Acid all reduced. Consequently, the good electrochemical performances are obtained.  相似文献   

7.
Thin films of TiO2 doped with Fe and Mn were deposited on F-doped SnO2-coated glass by spin coating. Dopant concentrations of 3–7 wt% (metal basis) were used. The structural, chemical, and optical characteristics of the films were investigated. Laser Raman microspectroscopy and glancing angle X-ray diffraction data showed that the films consisted of the anatase polymorph of TiO2. X-ray photoelectron spectroscopy data indicated the presence of Fe3+, Mn4+, and Mn3+ in the doped films, as predicted by calculated thermodynamic stability diagrams, and the occurrence of atomic disorder and associated structural distortion. Ultraviolet–visible spectrophotometry data showed that the optical indirect band gap of the films decreased significantly with increasing dopant levels, from 3.36 eV (undoped) to 2.95 eV (7 wt% Fe) and 2.90 eV (7 wt% Mn). These improvements are attributed to single (Fe) or multiple (Mn) shallow electron/hole trapping sites associated with the dopant ions.  相似文献   

8.
Magnetic Co3O4 nanoparticles were prepared by using microporous regenerated cellulose films as sacrificial scaffolds. The cellulose macromolecules and the porous structure of the films made them used as spatially confined reacting sites where Co(OH)2 nanoparticles could be synthesized in situ. When the cellulose matrix was removed by sintering at 500 °C, Co3O4 nanoparticles were obtained. XRD and XPS indicated that the prepared nanoparticles were pure Co3O4 without any impurity. TEM and SEM images revealed that the particle size of the nanoparticles was smaller than 100 nm. The nanoparticles had weak ferromagnetic properties at 25 °C. Furthermore, the pronounced quantum confinement effects of the synthesized nanoparticles have been observed, the optical bandgap energies determined were about 1.92 ~ 2.12 and 2.74 ~ 2.76 eV for O2− → Co3+ and O2− → Co2+ charge-transfer processes, respectively. Furthermore, the resulted Co3O4 nanoparticles behaved stable electrochemical performance with promising applications in the electrode for lithium ion battery.  相似文献   

9.
Chromite Spinel materials were synthesized in this study by the citrate precursor method using four divalent cations (Ni2+, Co2+, Zn2+, and Cu2+). Citrate precursors consisting of mixed chromium citrates were first subjected to a thermogravimetric (TG) analysis for determining optimum temperatures for annealing. TG of coprecipitated chromium(III) citrate–zinc citrate gel has been carried out separately in N2 and O2 atmospheres. In both the cases, dehydration is followed by a four-step decomposition. The TG data were subjected to kinetic/mechanistic analysis, and the values of activation energy and Arrhenius factor were approximated. TG curves of various powders which were obtained on annealing at the two temperatures did exhibit thermal instability when carried out in N2 atmosphere. A large coercivity of 2701.01 Oe was observed for NiCr2O4 at 650 °C. On the basis of the results, 450 °C has been chosen for annealing treatment of the four gels. The samples were accordingly annealed at two different temperatures (450 and 650 °C) in a muffle furnace for 1 h in each case. The annealed powders were characterized using X-ray diffraction (XRD), SEM, and vibrating sample magnetometer (VSM). The XRD patterns show that annealing of CuCr2O4, NiCr2O4, and CoCr2O4 at 450 °C yields very small crystallites with poor Bragg reflections, although ZnCr2O4 samples show better peaks in XRD data. Annealing at 650 °C resulted in particle size range of 8–89 nm in the four cases. In the case of ZnCr2O4, the particle size was 8 nm.  相似文献   

10.
Spinel Li4Ti5 − x Zr x O12/C (x = 0, 0.05) were prepared by a solution method. The structure and morphology of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical performances including charge–discharge (0–2.5 V and 1–2.5 V), cyclic voltammetry, and ac impedance were also investigated. The results revealed that the Li4Ti4.95Zr0.05O12/C had a relatively smaller particle size and more regular morphology than that of Li4Ti5O12/C. Zr4+ doping enhanced the ability of lithium-ion diffusion in the electrode. It delivered a discharge capacity 289.03 mAh g−1 after 50 cycles for the Zr4+-doped Li4Ti5O12/C while it decreased to 264.03 mAh g−1 for the Li4Ti5O12/C at the 0.2C discharge to 0 V. Zr4+ doping did not change the electrochemical process, instead enhanced the electronic conductivity and ionic conductivity. The reversible capacity and cycling performance were effectively improved especially when it was discharged to 0 V.  相似文献   

11.
The voltammetry of nanoparticles and scanning electrochemical microscopy are applied to characterize praseodymium centers in tetragonal and monoclinic zirconias, doped with praseodymium ions (Pr x Zr1−x O2), prepared via sol–gel routes. Doped zirconia nanoparticles were synthesized by a sol–gel liquid-phase route and characterized by different techniques, including X-ray diffraction powder pattern, ultraviolet–visible diffuse reflectance spectroscopy, infrared spectroscopy, and transmission electron microscopy (TEM). Gels annealed at around 400 °C yielded tetragonal Pr x Zr1−x O2 phases. The monoclinic forms of Pr-doped ZrO2 were obtained by annealing at temperatures higher than 1,100 °C. TEM micrographs proved that the size of the nanoparticles produced was dependent on their crystalline form, around 15 and 60 nm for tetragonal and monoclinic, respectively. The electrochemical study confirmed that a relatively high content of praseodymium cation was in the chemical state (IV), i.e., as Pr4+, in both zirconia host lattices. The catalytic and photocatalytic effects of Pr4+ centers located in the monoclinic zirconia lattice on nitrite reduction and oxygen evolution reaction were studied.  相似文献   

12.
The paper presents a study on the preparation of Co2SiO4/SiO2 nanocomposites by a new modified sol–gel method. We have prepared gels starting from tetraethylorthosilicate (Si(OC2H5)4), cobalt nitrate Co(NO3)2·6H2O and some diols: ethylene glycol (C2H6O2), 1,2propanediol (C3H8O2) and 1,3propanediol (C3H8O2), for a final composition: 30% CoO/70% SiO2. During the heating of the gels at 140 °C, a redox reaction takes place between NO3 ions and diol with formation of some carboxylate anions. These carboxylate anions react with the Co(II) ions to form coordination compounds embedded in silica matrix, as evidenced by FT-IR spectrometry and thermal analysis. These Co(II) coordinative compounds thermally decompose in the range 250–300 °C to the corresponding oxides: CoO and/or Co3O4 inside the matrices pores. When CoO results, it reacts with SiO2 at low temperature leading to Co2SiO4, which crystallizes at 700 °C. XRD patterns of the samples annealed at temperatures lower than 700 °C were characteristic to amorphous phases. The samples annealed at temperatures ≥700 °C, contain Co2SiO4 (olivine) as unique crystalline phase inside the amorphous silica matrix, according to XRD patterns. As evidenced by TEM images, Co2SiO4 nanoparticles are homogenously dispersed inside the silica matrix.  相似文献   

13.
The radiation-chemical reduction of Co2+ ions in an aqueous solution of Co(ClO4)2 containing sodium formate was studied. Stable metal sols containing spherical particles with a diameter of 2–4 nm are formed under γ-irradiation in the presence of polyacrylate as the stabilizing additive. An aqueous solution of colloidal cobalt has an optical absorption that increrases smoothly in the UV region without a maximum to 200 nm (ɛ200=1.3·104 mol-1 L cm-1). It is established that the radiation-chemical reduction of the Co2+ ions occursvia an autocatalytic mechanism. The metal sols catalyze the reduction of the Co2+ ions by Co2 radical ions formed under irradiation. The properties of the sols were studied, and it is shown that they are readily oxidized by hydrogen peroxide and other oxidants. The mechanism of chemical reactions involving the sols is discussed. Tranalated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1959–1964, October, 1998.  相似文献   

14.
The preparation and characterization of the M′–M′′–O nitrate–tartrate (M′ = Ca, Ba, Gd and M′ = W, Mo) precursor gels synthesized by simple, inexpensive, and environmentally benign aqueous sol–gel method is reported. The obtained gels were studied by thermal (TG/DSC) analysis. TG/DSC measurements revealed the possible decomposition pathway of synthesized M′–M′′–O nitrate–tartrate gels. For the synthesis of different metal tungstates and molybdates, the precursor gels were calcined at different temperatures (650, 800, and 900 °C). According to the X-ray diffraction (XRD) analysis data, the crystalline compounds CaMo1-x W x O4 doped with Ce3+ ions, BaMo1-x W x O4 doped with Eu3+ ions and Gd2Mo3O12 were obtained from nitrate–tartrate gels annealed at 650–900 °C temperatures. The XRD data confirmed that the fully crystalline single-phase powellite, scheelite, or Gd2(MoO4)3 structures were formed already at 650 °C. Therefore, the suggested sol–gel method based on the complexation of metal ions with tartaric acid is suitable for the preparation of mixed tungstates–molybdates at relatively low temperature in comparison with solid-state synthesis.  相似文献   

15.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2(简称LNMCO),并使用Zr (CH3COO)4进行ZrO2的包覆改性。TEM测试结果显示纳米级的ZrO2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 mA·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 mAh·g-1,而原样则为75.1%,224.1 mAh·g-1,循环100圈之后,1.5% ZrO2包覆样品的放电比容量为248.3 mAh·g-1,容量保持率为88.9%,高于原样的195.9 mAh·g-1和87.4%。  相似文献   

16.
Thermogravimetric analysis was used in order to study the reduction in air of submicronic powders of Co3−x Mn x O4 spinels, with 0 ≤ x ≤ 1. For x = 0 (i.e. Co3O4), cation reduction occurred in a single step. It involved the CoIII ions at the octahedral sites, which were reduced to Co2+ on producing CoO. For 0 < x ≤ 1, the reduction occurred in two stages at increasing temperature with increasing amounts of manganese. The first step corresponded to the reduction of octahedral CoIII ions and the second was attributed to the reduction of octahedral Mn4+ ions to Mn3+. From the individual weight losses and the electrical neutrality of the lattice, the CoIII and Mn4+ ion concentrations were calculated. The distribution of cobalt and manganese ions present on each crystallographic site of the spinel was determined. In contrast to most previous studies that took into account either CoIII and Mn3+ or Co2+, CoIII and Mn4+ only, our thermal analysis study showed that Co2+/CoIII and Mn3+/Mn4+ pairs occupy the octahedral sites. These results were used to explain the resistivity measurements carried out on dense ceramics prepared from our powders sintered at low temperature (700–750 °C) in a Spark Plasma Sintering apparatus.  相似文献   

17.
Interfacial electron transfer induced by 254 nm light at nanomaterial (nm) titanium dioxide/CoIII(N–N)3 3+ interface in binary mixed solvent media such as water/methanol (or 1,4-dioxane) has been probed. The distinct photo reduction of cobalt(III) complexes, CoIII(N–N)3 3+; (N–N)=(NH3)2, en (1,2-diamino ethane), pn (1,2-diamino propane), tn (1,3-diamino propane), and bn (1,4-diamino butane), by excited nm-TiO2 particles: CoIII + nm-TiO2 + hν → TiO2 (h+;e) + CoIII → nm-TiO2 (h) + CoII is solvent controlled. The electron transfer from the conduction band of TiO2 (e, CB) onto the metal centre of the complex consists of (i) electron transport from CB into surface-adsorbed species A: CoIII(N–N)3 3+ (ii) solution phase species B: CoIII(N–N)3 3+ (sol.), accumulated at the surface of the nanoparticle. In addition, UV irradiation of CoIII(N–N)3 3+ stimulates generation of \textCo\textaq\textII {\text{Co}}_{\text{aq}}^{\text{II}} ion, due to charge transfer transition, in solution phase. After UV irradiation, cobalt-implanted nm-TiO2 separated as gray ultrafine particles, which were isolated. Photo efficiency of the formation of CoII ion was estimated and the cobalt implanted nanomaterial crystals isolated from the photolyte solutions were subjected to SEM-EDX, X-ray mapping, and HRTEM-SAED analyses. Solvent medium was found to contribute in both the formation of CoII ion and interstitial insertion of cobalt into the lattice of nm-TiO2.  相似文献   

18.
Nanocrystalline cubic fluorite/bixbyite CeO2 or α–Mn2O3 has been successfully synthesized by using methanol as a solvent via sol–gel method calcined at 400 °C. The obtained products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV–vis absorption and Photoluminescence (PL) spectroscopy. TEM reveals that the as-synthesized ultra-fine samples consist of elliptical/spherical and sheet-like morphology of crystalline particles of 8/30 nm, which are weakly aggregated. Optical absorbance spectra reveal that the absorption of ceria in the UV region originates from the charge- transfer transition between the O2− (2p) and Ce4+ (4f) orbit in CeO2. However, α–Mn2O3 nanostructures with nearly pure band gap emission should be of importance for their applications as UV emitters.  相似文献   

19.
A cost-efficient kaolinite-cellulose/cobalt oxide green nanocomposite (Kao-Cel/Co3O4 NC) was successfully synthesized, and utilized as a promising material for removing Pb2+ and Cd2+ from aqueous solution. The fabricated nanocomposite has been characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy-energy dispersive X-ray, high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller analysis. The batch methodology was exploited for optimization of process parameters and the optimized conditions were found to be adsorbent dosage (2.0 g/L), extraction time (50 min), initial concentration (60 mg/L), and initial solution pH (6). Kao-Cel/Co3O4 NC displayed excellent adsorption properties and achieved maximum saturation capacity (Qm) of 293.68 mg Pb2+/g and 267.85 mg Cd2+/g, with an equilibration time of 50 min at 323 K. The Langmuir model best expressed the isotherm data recommending the adsorption onto energetically homogeneous NC surface, while the compatibility of kinetics data with pseudo-second-order model revealed the dependency of adsorption rate on adsorption capacity, and probable involvement of chemisorption in the rate-controlling step. Electrostatic interaction and ion exchange mechanism were responsible for the uptake of Pb2+ and Cd2+ by Kao-Cel/Co3O4 NC as demonstrated by Fourier transform infrared spectroscopy and pH studies. Thermodynamic parameters confirmed the physical, spontaneous, and endothermic sequestration processes. Real water investigation specified that the present adsorbent could be effectively used for liquid phase decontamination of Pb2+ and Cd2+. The nanocomposite exhibited high reusability, which could be utilized efficiently for five runs with sustainable results. In summary, this study portrayed the present nanocomposite as an emerging material for the adsorption of heavy metal ions particularly Pb2+ and Cd2+.  相似文献   

20.
Polymeric materials have been found to be ideal candidates for the synthesis of organic–inorganic nanomaterials. We have obtained Co3O4‐decorated graphene oxide (GO) nanocomposites by a simple polymer combustion method. Polyvinyl alcohol (PVA) of two different molecular weights, 14,000 and 125,000, was used for the synthesis. The pristine sample was annealed at 300, 500, and 800°C. PVA has played an important role in the formation of GO and Co3O4 nanoparticles. Synthesized Co3O4–GO nanocomposites were characterized by X‐ray diffraction, Fourier transform infrared, Raman, electron paramagnetic resonance, transmission electron microscopy, and vibrating sample magnetometry. Reflection peaks at 12° and 37° in an X‐ray study confirm the formation of Co3O4–GO. Raman study validates the presence of GO in nanocomposites of Co3O4–GO. Room temperature ferromagnetism was observed in all annealed samples. The highest coercivity of 462 G was observed for 300°C annealed samples as compared with bulk Co3O4. On the basis of the results obtained, a mechanism of formation is proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号