首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
An adamantane‐based host material, namely, 4‐{3‐[4‐(9H‐carbazol‐9‐yl)phenyl]adamantan‐1‐yl}benzonitrile (CzCN‐Ad), was prepared by linking an electron‐donating carbazole unit and an electron‐accepting benzonitrile moiety through an adamantane bridge. In this approach, two functional groups were attached to tetrahedral points of adamantane to construct an “sp3” topological configuration. This design strategy endows the host material with a high triplet energy of 3.03 eV due to the disruption of intramolecular charge transfer. Although CzCN‐Ad has a low molecular weight, the rigid nonconjugated adamantane bridge results in a glass transition temperature of 89 °C. These features make CzCN‐Ad suitable for fabricating blue phosphorescent organic light‐emitting diodes (PhOLEDs). The devices based on sky‐blue phosphor bis[(4,6‐difluorophenyl)pyridinato‐N,C2′](picolinato)iridium(III) (FIrpic) achieved a high maximum external quantum efficiency (EQE) of 24.1 %, which is among the best results for blue PhOLEDs ever reported. Furthermore, blue PhOLEDs with bis(2,4‐difluorophenylpyridinato)‐tetrakis(1‐pyrazolyl)borate iridium(III) (FIr6) as dopant exhibited a maximum EQE of 14.2 % and a maximum luminance of 34 262 cd m?2. To the best of our knowledge, this is the highest luminance ever reported for FIr6‐based PhOLEDs.  相似文献   

2.
We report the synthesis of a new class of thermally stable and strongly luminescent cyclometalated iridium(III) complexes 1 – 6 , which contain the 2‐acetylbenzo[b]thiophene‐3‐olate (bt) ligand, and their application in organic light‐emitting diodes (OLEDs). These heteroleptic iridium(III) complexes with bt as the ancillary ligand have a decomposition temperature that is 10–20 % higher and lower emission self‐quenching constants than those of their corresponding complexes with acetylacetonate (acac). The luminescent color of these iridium(III) complexes could be fine‐tuned from orange (e.g., 2‐phenyl‐6‐(trifluoromethyl)benzo[d]thiazole (cf3bta) for 4 ) to pure red (e.g., lpt (Hlpt=4‐methyl‐2‐(thiophen‐2‐yl)quinolone) for 6 ) by varying the cyclometalating ligands (C‐deprotonated C^N). In particular, highly efficient OLEDs based on 6 as dopant (emitter) and 1,3‐bis(carbazol‐9‐yl)benzene (mCP) as host that exhibit stable red emission over a wide range of brightness with CIE chromaticity coordinates of (0.67, 0.33) well matched to the National Television System Committee (NTSC) standard have been fabricated along with an external quantum efficiency (EQE) and current efficiency of 9 % and 10 cd A?1, respectively. A further 50 % increase in EQE (>13 %) by replacing mCP with bis[4‐(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)phenyl]diphenylsilane (BIQS) as host for 6 in the red OLED is demonstrated. The performance of OLEDs fabricated with 6 (i.e., [(lpt)2Ir(bt)]) was comparable to that of the analogous iridium(III) complex that bore acac (i.e., [(lpt)2Ir(acac)]; 6 a in this work) [Adv. Mater.­ 2011 , 23, 2981] fabricated under similar conditions. By using ntt (Hnnt=3‐hydroxynaphtho[2,3‐b]thiophen‐2‐yl)(thiophen‐2‐yl)methanone) ligand, a substituted derivative of bt, the [(cf3bta)2Ir(ntt)] was prepared and found to display deep red emission at around 700 nm with a quantum yield of 12 % in mCP thin film.  相似文献   

3.
We designed a 3,6‐dibromo‐9‐hexyl‐9H‐carbazole derivative with the blue emissive iridium complex bis[2‐(4,6‐difluorophenyl)pyridyl‐N,C2′](picolinato)iridium(III) (FIrpic) linked at the alkyl terminal. Based on this monomer, novel 3,6‐carbazole‐alt‐tetraphenylsilane copolymers grafted with FIrpic were synthesized by palladium‐catalyzed Suzuki coupling reaction, and the content of FIrpic in the polymers could be controlled by feed ratio of the monomers. The polymer films mainly show blue emission from FIrpic, and the emission intensity from the polymer backbones is much weaker compared with the doped analogues, which demonstrates an efficient energy transfer from polymeric host to covalently bonded guest. The phase separation in the polymers was suppressed, which can be identified by atomic force microscopy and designed electroluminescent (EL) devices. EL devices based on the polymers exhibited blue phosphorescence from FIrpic. The luminous efficiency of preliminary devices reached 2.3 cd/A, and the efficiency roll‐off at high current densities was suppressed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1859–1865, 2010  相似文献   

4.
We report novel host polymers for a high‐efficiency polymer‐based solution‐processed phosphorescent organic light‐emitting diode with typical blue‐emitting dopant bis(4,6‐difluorophenylpyridinato‐N,C2)iridium(III) picolinate (FIrpic). The host polymers, soluble polynorbornenes with pendant carbazole derivatives, N‐phenyl‐9H‐carbazole ( P1 ), N‐biphenyl‐9H‐carbazole ( P2 ), and 9,9′‐(1,3‐phenylene)bis‐9H‐carbazole (mCP) ( P3 ) are efficiently synthesized by vinyl addition polymerization of norbornene monomers using Pd(II) catalyst in combination with 1‐octene chain transfer agent. The polymers exhibit high thermal stability with high decomposition (Td5 > 410 °C) and glass transition temperatures (Tg ≈ 268 °C). The HOMO (ca. ?5.5 to ?5.7 eV) and LUMO (ca. ?2.0 to ?2.1 eV) levels with the high triplet energy of about 2.7–3.0 eV suggest that the polymers are suitable for a host material for blue emitters. Among the solution‐processed devices that were fabricated based on the emissive layers containing the P1 ? P3 host doped with various concentrations of FIrpic (7–13 wt %), the best device with P3 host exhibits power efficiency of 3.0 lm W?1 and external quantum efficiency of 4.0% at a luminance of 1000 cd m?2 that is outstanding among the polymeric rivals. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Two novel alternating π‐conjugated copolymers, poly[2,8‐(6,6′,12,12′‐tetraoctyl‐6,12‐dihydroindeno‐[1,2b]fluorene‐ alt‐5(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole) ( P1 ) and poly[2,8‐(6,6′,12,12′‐tetraoctyl‐6,12‐dihydroindeno‐[1,2b]fluorene‐ alt‐5(1‐(p‐octylphenyl)‐2,5‐di(2‐thienyl)pyrrole) ( P2 ), were synthesized via the Suzuki coupling method and their optoelectronic properties were investigated. The resulting polymers P1 and P2 were completely soluble in various common organic solvents and their weight‐average molecular weights (Mw) were 5.66 × 104 (polydispersity: 1.97) and 2.13× 104 (polydispersity: 1.54), respectively. Bulk heterojunction (BHJ) solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM(1:5)/TiOx/Al configurations. The BHJ solar cell with P1 :PC70BM (1:5) has a power conversion efficiency (PCE) of 1.12% (Jsc= 3.39 mA/cm2, Voc= 0.67 V, FF = 49.31%), measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. We fabricated polymer light‐emitting diodes (PLEDs) in ITO/PEDOT:PSS/emitting polymer:polyethylene glycol (PEG)/Ba/Al configurations. The electroluminescence (EL) maxima of the fabricated PLEDs varied from 526 nm to 556 nm depending on the ratio of the polymer to PEG. The turn‐on voltages of the PLEDs were in the range of 3–8 V depending on the ratio of the polymer to PEG, and the maximum brightness and luminance efficiency were 2103 cd/m2 and 0.37 cd/A at 12 V, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3169–3177, 2010  相似文献   

6.
Five new thermally robust electroluminescent fluorene‐based conjugated copolymers, including poly[2,7‐(9,9‐dioctylfluorene)‐co‐4,7‐{5,6‐bis(3,7‐dimethyloctyloxymethyl)‐2,1,3‐(benzothiadiazole)}] ( PFO‐P2C10BT ) were synthesized and used to fabricate the efficient polymer light‐emitting diodes (PLEDs). The glass transition temperatures of the polymers were found to be higher than that of poly(9,9‐dialkylfluorenes) and are in the range 113–165 °C. We fabricated PLEDs in indium‐tin oxide/PEDOT/light‐emitting polymer/cathode configurations using either double‐layer LiF/Al or triple‐layer Alq3/LiF/Al cathode structures. The new copolymers were found to have emission colors that vary from greenish blue (491 nm) to green (543 nm) depending on the copolymer composition. The maximum brightness and luminance efficiency of these PLEDs were found to be up to 5347 cd/m2 and 1.51 cd/A at 10 V, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6762–6769, 2008  相似文献   

7.
Carrier balance is essential to obtain efficient emission in polymer light‐emitting diodes (PLEDs). A new polymer 3P5O composed of alternating p‐terphenyl and tetraethylene glycol ether segments is designed and synthesized by the Suzuki coupling reaction and successfully employed as hole‐buffer layer to improve carrier balance. Multilayer PLEDs [ITO/PEDOT:PSS/ 3P5O /SY/LiF/Al], with Super Yellow (SY) as the emitting layer and 3P5O as the hole‐buffer layer, reveal maximum luminance (17,050 cd/m2) and maximum current efficiency (6.6 cd/A) superior to that without the hole‐buffer layer (10,017 cd/m2, 3.0 cd/A). Moreover, it also shows better performance than that using conventional BCP as hole‐blocking layer [ITO/PEDOT:PSS/SY/BCP/LiF/Al (80 nm): 13,639 cd/m2, 4.1 cd/A]. The performance enhancement has been attributed to hole‐buffering characteristics of 3P5O that results in improved carrier recombination ratio and wider carrier recombination region. Current results indicate that the 3P5O is a promising hole‐buffer polymer to enhance the performance of optoelectronic devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 785–794  相似文献   

8.
A new aromatic host polymer poly{[1,4‐bis(9‐decylcarbazole‐3‐yl)‐2,3,5,6‐tetrafluorobenzene‐3,3′‐diyl]‐alt‐[N‐methylisatin‐2‐one‐3,3‐diyl]} (PICzFB) containing carbazole–tetrafluorinebeneze–carbazole moiety in the π‐conjugated interrupted polymer backbone was synthesized by superacid‐catalyzed metal‐free polyhydroxyalkylation. The resulted copolymer PICzFB showed a comparatively wide band gap up to 3.32 eV and high triplet energy (ET) of 2.73 eV due to confined conjugation by the δ? C bond interrupted polymer backbone. Blue and green light‐emitting devices with PICzFB as host, FIrpic and Ir(mppy)3 as phosphorescent dopants showed the maximum luminous efficiencies of 5.0 and 27.6 cd/A, respectively. The results suggested that the strategy of incorporating bipolar unit into the π‐conjugated interrupted polymer backbone can be a promising approach to obtain host polymer with high triplet level for solution‐processed blue and green phosphorescent polymer light‐emitting diodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1037–1046  相似文献   

9.
Novel polyfluorene copolymers alternately having an 1,3,4‐oxadiazole unit in the main chain were prepared by both one‐step and two‐step methods for polyoxadiazole synthesis. They displayed highly efficient blue photoluminescence, the properties of which were affected by the extent of conjugation and the changes in the electron density by a side chain. An electrochemical analysis of the polymers using cyclic voltammetry suggested that they could be used as electron‐transport/hole‐blocking materials as well as blue emission materials for polymer light‐emitting diodes. A simple double‐layer device consisting of poly(N‐vinylcarbazole) as a hole‐transport layer and poly[(9,9′‐didodecylfluorene‐2,7‐diyl)‐alt‐((1,4‐bis(1,3,4‐oxadiazole)‐2,5‐di(2‐ethylhexyloxy)phenylene)‐5,5′‐diyl)] as an emission layer exhibited narrow blue electroluminescence with a maximum at 430 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1058–1068, 2004  相似文献   

10.
In an effort to decrease the electron‐injection barrier from the anode electrode, four copoly(aryl ether)s ( P1 – P4 ), consisting of alternating isolated electron‐transporting [2,5‐diphenyl‐1,3,4‐oxadiazole for P1 and P3 and 5,5′‐diphenyl‐2,2′‐p‐(2,5‐bishexyloxyphenylene)‐bis‐1,3,4‐oxadiazole for P2 and P4 ] and emitting chromophores (1,4‐distyryl‐2,5‐dihexyloxybenzene for P1 and P2 and 1,4‐distyryl‐2,5‐dihexylbenzene for P3 and P4 ), have been synthesized by the nucleophilic displacement reaction between bisfluoride and bisphenol monomers. They are basically amorphous materials with 5% weight‐loss temperature above 400 °C. The photoluminescence spectra and quantum yields of these copolymers are dependent on the compositions of the two isolated fluorophores. The highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of these copolymers have been estimated from their cyclic voltammograms. All the observations directly prove that the oxidation starts at the hole‐transporting segments. The electron affinity can be enhanced by the introduction of isolated electron‐transporting segments that lead to a charge‐injection balance. Single‐layer light‐emitting diodes (Al/ P1 – P4 /ITO glass) have been fabricated. P1 and P2 reveal blue electroluminescence, and P3 and P4 reveal purple‐blue electroluminescence. Moreover, the incorporation of bisoxadiazole units increases the electron affinity and reduces the turn‐on electric field better than one oxadiazole unit. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2765–2777, 2003  相似文献   

11.
The different effects on the photodegradation‐induced photoluminescence (PL) of π‐conjugated polymeric thin films upon the doping of Ir(III) containing triplet emitters in ambient conditions at room temperature were investigated. In this study, we prepared spin‐coated thin films using three different polymer matrices including poly(9‐vinylcarbazole) (PVK), poly[9,9‐bis(2‐ethylhexyl)fluorene‐2,7‐diyl] (PF2/6), and poly[2‐(5′‐cyano‐5′‐methyl‐hexyloxy)‐1,4‐phenylene] (CNPPP) derivatives doped with Ir(III) containing triplet emitters: Ir(III) bis[(4,6‐fluorophenyl)‐pyridinato‐N,C2′] picolinate (FIrpic), or Ir(III)fac‐tris(2‐phenylpyridine) (Ir(ppy)3), or Ir(III)bis(2‐(2′‐benzothienyl) pyridinato‐N‐acetylacetonate) (Ir(btp)2acac). Using the doped films, and their neat films, on quartz substrates, the UV‐Visible absorption (UV‐Vis) and PL spectra were recorded under continuous illumination with the excitation wavelengths at the absorption maxima of the corresponding matrix polymers. The dopant effects on the photodegradation‐induced PL were extracted from the kinetic data obtained from the doped films by subtracting the mutual degradation kinetics of their corresponding neat films. The obtained dopant effects show a strong correlation between the photo‐induced PL degradation and the exciton migration behaviors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2395–2403, 2008  相似文献   

12.
Three novel poly(2,7‐carbazole)s having hole injection and transporting pendent moieties of carbazole and triphenylamine at the N‐position were synthesized for achieving pure blue electroluminescence. The N‐pendants in the polymers correspond to N‐phenylcarbazol‐2‐yl ( P1 ), N,N‐diphenylamino‐N‐phenylcarabazol‐2‐yl ( P2) , and 4‐phenyl having a hydrocarbon chain with a triphenylamine terminal ( P3 ), respectively. Electronic, optical, and electroluminescence properties of these polymers were compared with those of a poly(2,7‐carbazole) directly connected with triphenylamine at the N‐position ( P0 ) having an aggregation‐induced emissive property. The photoluminescence (PL) spectra suggested that they could emit in the region of blue light in the film state. Especially, P2 that has the fixed and large diphenylaminocarbazolyl pendant showed a deep‐blue fluorescence with CIE(x, y) = (0.15, 0.07). The P0 , P2 , and P3 based light emitting diode devices showed maximum electroluminescence wavelengths in the range of 430–450 nm. The P2 device showed pure blue emission (CIE[x, y] = [0.18, 0.16]), high luminance (1130 cd/m2) and current density (628 mA/cm2) at 8 V, whereas low‐energy emissions around 500–600 nm were emerged at higher than 9 V. The P0 and P3 devices also showed a blue electroluminescence in the range of 8–11 V, but their luminance and efficiency were low. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2526–2534  相似文献   

13.
A series of thiophene‐containing photoactive copolymers consisting of alternating conjugated and nonconjugated segments were synthesized. The 1H NMR spectra corroborated the well‐defined structures, and the copolymers not only were soluble in common organic solvents but also had high glass‐transition temperatures (ca. 130 °C) and good thermal stability up to 390 °C. Introducing aliphatic functional groups, such as alkyl or alkoxyl, into chromophores of the copolymers redshifted the photoluminescence spectra and lowered the optical bandgaps. The electrochemical bandgaps calculated from cyclic voltammetry agreed with the optical bandgaps and thus indicated that electroluminescence and photoluminescence originated from the same excited state. The energy levels (highest occupied molecular orbital and lowest unoccupied molecular orbital) of all the copolymers were lower than those of poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1.4‐phenylenevinylene] MEH–PPV, indicating balanced hole and electron injection, which led to improved performance in both single‐layer and double‐layer polymeric‐light‐emitting‐diode devices fabricated with these copolymers. All the copolymers emitted bluish‐green or green light above the threshold bias of 5.0 V under ambient conditions. At the maximum bias of 10 V, the electroluminescence of a device made of poly(2‐{4‐[2‐(3‐ethoxy phenyl)ethylene]phenyl}‐5‐{4‐[2‐(3‐ethoxy,4‐1,8‐octanedioxy phenyl)ethylene]phenyl}thiophene) was 5836 cd/m2. The external electroluminescence efficiency decreased with the lifetime as the polymer degraded. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3954–3966, 2004  相似文献   

14.
Nonconjugated bipolar transport polymers have been developed as host materials for electroluminescent devices by incorporating both electron‐transporting and hole‐transporting functionalities into copolymers. The random copolymer PCt‐nvk3‐7 containing mesogen‐jacketed segment of P‐Ct have been synthesized and characterized. The effect of mesogen‐jacketed segment content of these bipolar copolymers on device performance has been investigated. The results of polymer light‐emitting diodes (PLEDs) show that the jacketed content of copolymers has a significant effect on device performance: lowering charge transport and facilitating the hole‐electron recombination leads to much higher current efficiency. Applying these high triplet random copolymers as host, the maximum current efficiency of 0.70 cd/A and the maximum brightness of 1872.8 cd/m2 was achieved for PCt‐nvk3‐7 with an orange‐emitting complex dopant. The results suggest that the bipolar copolymers PCt‐nvks can be good host polymers for electrophosphorescent devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7861–7867, 2008  相似文献   

15.
A novel silicon‐based compound, 10‐phenyl‐2′‐(triphenylsilyl)‐10H‐spiro[acridine‐9,9′‐fluorene] (SSTF), with spiro structure has been designed, synthesized, and characterized. Its thermal, electronic absorption, and photoluminescence properties were studied. Its energy levels make it suitable as a host material or exciton‐blocking material in blue phosphorescent organic light‐emitting diodes (PhOLEDs). Accordingly, blue‐emitting devices with iridium(III) bis[(4,6‐difluorophenyl)‐pyridinato‐N,C2′]picolinate (FIrpic) as phosphorescent dopant have been fabricated and show high efficiency with low roll‐off. In particular, 44.0 cd A?1 (41.3 lm W?1) at 100 cd m?2 and 41.9 cd A?1 (32.9 lm W?1) at 1000 cd m?2 were achieved when SSTF was used as host material; 28.1 lm W?1 at 100 cd m?2 and 20.6 lm W?1 at 1000 cd m?2 were achieved when SSTF was used as exciton‐blocking layer. All of the results are superior to those of the reference devices and show the potential applicability and versatility of SSTF in blue PhOLEDs.  相似文献   

16.
A series of fluorene‐based copolymers composed of blue‐ and orange‐light‐emitting comonomers were synthesized through palladium‐catalyzed Suzuki coupling reactions. 9,9‐Dihexylfluorene and 2‐(2,6‐bis‐{2‐[1‐(9,9‐dihexyl‐9H‐fluoren‐2‐yl)‐1,2,3,4‐tetrahydroquinolin‐6‐yl]‐vinyl}‐pyran‐4‐ylidene)‐malononitrile (DCMF) were used as the blue‐ and orange‐light‐emitting chromophores, respectively. The resulting single polymers exhibited simultaneous blue (423/450 nm) and orange (580–600 nm) emissions from these two chromophores. By adjusting the fluorene and DCMF contents, white light emission could be obtained from a single polymer; a device with an ITO/PEDOT:PSS/polymer/Ca/Al configuration was found to exhibit pure white electroluminescence with Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.31), a maximum brightness of 1180 cd/m2, and a current efficiency of 0.60 cd/A. Furthermore, the white light emission of this device was found to be very stable with respect to variation of the driving voltage. The CIE coordinates of the device were (0.32, 0.29), (0.32, 0.29), and (0.33, 0.31) for driving voltages of 7, 8, and 10 V, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3380–3390, 2007  相似文献   

17.
A new triphenylamine‐bridged fluoranthene derivative, 4‐(7,10‐diphenylfluoranthen‐8‐yl)‐N‐[4‐(7,10‐diphenylfluoranthen‐8‐yl)phenyl]‐N‐phenylaniline (BDPFPA), with a high glass transition temperature of 220 °C has been synthesized and characterized. BDPFPA is a highly fluorescent and versatile material that can be used as a nondoped green emitter and as a hole transporter. BDPFPA was used in a standard trilayer device as the emitting layer, which showed a low turn‐on voltage (<3 V) and a high efficiency of 11.6 cd A?1. The device also shows little efficiency roll‐off at high brightness. For example, the efficiency can still be maintained at 11.4 cd A?1 (5.4 lm W?1) at a brightness of 10 000 cd m?2. These results are among the best reported for nondoped fluorescent green organic light‐emitting diodes. A simple bilayer device, in which BDPFPA serves as a hole‐transporting layer, has a maximum power efficiency of 3.3 lm W?1 and the performance is nearly 40 % higher than that of an N,N′‐bis(1‐naphthyl)‐N,N′‐ diphenyl‐1,1′‐biphenyl‐4,4′‐diamine (NPB)‐based standard device.  相似文献   

18.
For the purpose of making hyperbranched polymer (Hb‐Ps)‐based red, green, blue, and white polymer light‐emitting diodes (PLEDs), three Hb‐Ps Hb‐ terfluorene ( Hb‐TF ), Hb ‐4,7‐bis(9,9′‐dioctylfluoren‐2‐yl)‐2,1,3‐benzothiodiazole ( Hb‐BFBT ), and Hb‐ 4,7‐bis[(9,9′‐dioctylfluoren‐2‐yl)‐thien‐2‐yl]‐2,1,3‐benzothiodiazole ( Hb‐BFTBT ) were synthesized via [2+2+2] polycyclotrimerization of the corresponding diacetylene‐functionalized monomers. All the synthesized polymers showed excellent thermal stability with degradation temperature higher than 355 °C and glass transition temperatures higher than 50 °C. Photoluminance (PL) and electroluminance (EL) spectra of the polymers indicate that Hb‐TF , Hb‐BFBT , and Hb‐BFTBT are blue‐green, green, and red emitting materials. Maximum brightness of the double‐layer devices of Hb‐TF , Hb‐BFBT , and Hb‐BFTBT with the device configuration of indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/light‐emitting polymer/CsF/Al are 48, 42, and 29 cd/m2; the maximum luminance efficiency of the devices are 0.01, 0.02, and 0.01 cd/A. By using host–guest doped system, saturated red electrophosphorescent devices with a maximum luminance efficiency of 1.61 cd/A were obtained when Hb‐TF was used as a host material doped with Os(fptz)2(PPh2Me2)2 as a guest material. A maximum luminance efficiency of 3.39 cd/A of a red polymer light‐emitting device was also reached when Hb‐BFTBT was used as the guest in the PFO (Poly(9,9‐dioctylfluorene)) host layer. In addition, a series of efficient white devices were, which show low turn‐on voltage (3.5 V) with highest luminance efficiency of 4.98 cd/A, maximum brightness of 1185 cd/m2, and the Commission Internationale de l'Eclairage (CIE) coordinates close to ideal white emission (0.33, 0.33), were prepared by using BFBT as auxiliary dopant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The preparation of triarylamine N‐functionalized 3,6‐linked carbazole homopolymers as well as alternating copolymers with 2,5‐diphenyl‐[1,3,4]oxadiazole and benzo[1,2,5]thiadiazole was undertaken using Suzuki cross‐coupling polymerization procedures associating 3,6‐bis(4,4,5,5‐tetramethyl‐[1,3,2]dioxaborolan‐2‐yl)‐9‐(bis[4‐(2‐butyl‐octyloxy)‐phenyl]‐amino‐phen‐4‐yl)‐carbazole and, respectively, 3,6‐dibromo‐9‐(bis[4‐(2‐butyl‐octyloxy)‐phenyl]‐amino‐phen‐4‐yl)‐carbazole, 2,5‐bis(4‐bromo‐phenyl)‐[1, 3,4]oxadiazole, and 4,7‐dibromo‐benzo[1,2,5]thiadiazole. Both the carbazole homopolymer and alternating copolymer with 2,5‐diphenyl‐[1,3,4]oxadiazole were found as wideband gap materials emitting in the blue part of the electromagnetic spectrum while the carbazole alternating copolymer with 4,7‐benzo[1,2,5]thiadiazole had a narrower band gap and emitted in the orange part of the electromagnetic spectrum. The new polymers are thermally stable up to 300 °C. A discussion of the electrochemical and optical properties of the new polymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5957–5967, 2007.  相似文献   

20.
Four new copolyethers ( P1 – P4 ) consisting of two isolated emitting chromophores [2,5‐dihexyloxy‐1,4‐distyrylbenzene (HODSB) and 2,5‐dihexyloxy‐1,4‐di(4‐methylenestyryl)benzene (HOMDSB) for P1 and P2 , 2,5‐dihexyl‐1,4‐distyrylbenzene (HDSB) and HOMDSB for P3 and P4 ] in the backbone, in which P2 and P4 further contain electron‐transporting chromophores [7‐oxy‐4‐methylcoumarin (OMC)] in the side chain, were successfully prepared by the Heck coupling reaction. The photoluminescence spectra and quantum yields of the copolymers depended mainly on compositions of the isolated fluorophores. Their highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels were estimated from their cyclic voltammograms. Electrochemical investigations proved that the oxidation started at hole‐transporting DSB segments, whereas reduction began at electron‐transporting OMC groups in P2 and P4 . The electron affinity of P2 and P4 was enhanced by introducing electron‐transporting OMC chromophores. Double‐layer light‐emitting diodes (ITO/PEDOT:PSS / polymer/Al) of P1 and P2 revealed green electroluminescence, and those of P3 and P4 emitted blue light. Moreover, incorporation of OMC side groups effectively reduced turn‐on electric field and enhanced luminance efficiency of the EL devices due to increased electron affinity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 211–221, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号