首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new ATRP initiator containing two furyl rings, namely, bis(furan‐2‐ylmethyl) 2‐bromopentanedioate was synthesized starting from commercially available l ‐glutamic acid as a precursor. Well‐defined bisfuryl‐terminated poly(lauryl methacrylate) macromonomers with molecular weight and dispersity in the range 5000–12,000 g mol?1 and 1.30–1.37, respectively, were synthesized employing the initiator by atom transfer radical polymerization (ATRP). Independently, 1,1′,1″‐(nitrilotris(ethane‐2,1‐diyl))tris(1H‐pyrrole‐2,5‐dione) was synthesized as a tris‐maleimide counterpart for furan‐maleimide click reaction. Thermo‐reversible network polymer bearing flexible poly(lauryl methacrylate; (PLMA) chains was obtained by furan‐maleimide Diels–Alder click reaction of bisfuryl‐terminated PLMA with 1,1′,1″‐(nitrilotris(ethane‐2,1‐diyl))tris(1H‐pyrrole‐2,5‐dione). The prepared network polymer showed retro‐Diels–Alder reaction in the temperature range 110–170 °C as determined from DSC analysis. The presence of low Tg (–40 °C) PLMA chains induced chain mobility to the network structure which led to the complete scratch healing of the coating at 60 °C in five days due to furan‐maleimide adduct formation. The storage modulus of the network polymer was found to be 3.7 × 104 Pa at the constant angular frequency of 5 rad/sec and strain of 0.5%. The regular reversal of storage (G ′) and loss modulus (G ″) was observed with repeated heating (40 to 110 °C) and cooling cycles (110 to 40 °C) at constant angular frequency and strain. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2700–2712  相似文献   

2.
Dimethyl 2,6‐anthracene dicarboxylate is used as a comonomer in the synthesis of functional copolymers that are subject to modification with Diels–Alder reactions. The formation of poly(ethylene terephthalate‐co‐2,6‐anthracenate), containing less than 20 mol % of the anthracene‐2,6‐dicarboxylate structural units, provides materials that are tractable and soluble. The anthracene units of the copolymers undergo Diels–Alder reactions with N‐substituted maleimides. The grafting of N‐alkylmaleimides affords soluble, hydrophobic polymers, whereas grafting with maleimide‐terminated poly(ethylene glycol) affords hydrophilic polymers. Because this reaction proceeds below the melting point of the copolymers, the procedure can be applied to thin films, whereby the surface properties are modified. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3256–3263, 2002  相似文献   

3.
We have synthesized poly(ε‐caprolactone‐co‐tert‐butyl glycidyl ether) (CL‐co‐BGE) statistical copolymers using 1‐tert‐butyl‐4,4,4‐tris(dimethylamino)‐2,2‐bis [tris(dimethylamino)phophoranylidenamino]‐2Λ5,4Λ5‐catenadi(phosphazene) (t‐BuP4) as the catalyst. The hydrolysis of the resulting polymers yields amphiphilic poly(ε‐caprolactone‐co‐glycidol) (CL‐co‐GD) copolymers. By use of the quartz crystal microbalance with dissipation (QCM‐D), we have investigated the enzymatic degradation of the copolymers. It is shown that the degradation rate increases with the content of hydrophilic (GD) units. (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide) (MTT) assay experiments demonstrate that the CL‐co‐GD copolymers have low cytotoxicity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 846–853  相似文献   

4.
This article describes the synthesis and properties of the first poly(arylene‐vinylene)‐based sensitizers for application in dye‐sensitized solar cells (DSSC). The polymers were prepared by the Suzuki–Heck copolymerization of potassium vinyltrifluoroborate (PVTB) with a mixture of dibromoaryl comonomers designed to obtain macromolecules able to bind onto the photoelectrode by means of carboxyphenylene units. The copolymerization reactions were carried out in the presence of an excess of PVTB to lower the molecular weights of the polymers, which were obtained as soluble materials. The polymers poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene] ( P1 ), poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐(4,7‐benzothiadiazolylene)‐vinylene] ( P2 ), and poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐2,5‐thienylene‐vinylene] ( P3 ) were used in DSSC devices, obtaining conversion efficiencies up to 0.88% ( P3 ). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
In this work, pendant groups with both furan and maleimide moieties were incorporated into a polymethacrylate copolymer with lauryl methacrylate as comonomer to yield a one‐system Diels–Alder (DA) polymer. A combined Fourier transform infrared (FTIR) spectroscopy and rheological study was performed to quantify the extent of the reversible DA reaction and the resulting changes in mechanical properties of the polymer. The kinetics of the retro‐Diels–Alder (rDA) reaction was studied at different temperatures to determine an enthalpy of activation. Control polymers with only one functional moiety, that is, the furan or maleimide, were also synthesized to study the differences in viscoelastic behavior and the absence of self‐healing. Microscratch tests were performed to obtain information about the disappearance of well‐defined intentional surface scratches under different healing conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1669–1675  相似文献   

6.
Syntheses of copolymers composed of optically active depsipeptides (3,6‐dimethyl‐2,5‐morphorinedione) and L ‐lactide—poly(L ‐3,L ‐6‐dimethyl‐2,5‐morphorinedione‐co‐L ‐lactide), poly(L ‐3,DL ‐6‐dimethyl‐2,5‐morphorinedione‐co‐L ‐lactide), and poly(L ‐3,D ‐6‐dimethyl‐2,5‐morphorinedione‐co‐L ‐lactide)—were examined in an effort to improve the biodegradability and physical properties of homopoly(L ‐lactide). In degradation tests, the copolymers composed of 3,6‐dimethyl‐2,5‐morphorinedione and lactide in the ratios 10/90 to 13/87 exhibited high biodegradability toward proteinase K, whereas a homopolymer, poly(L ‐lactide), exhibited very poor biodegradability (only 50% after 200 h). These polymers composed of 3,6‐dimethyl‐2,5‐morphorinedione/L ‐lactide in 11/89 to 13/87 ratios also degrades rapidly after being in compost for 30 days. The resulting copolymers, however, showed relatively low elongation properties. Therefore, ternary copolymerizations of L ‐3,DL ‐6‐dimethyl‐2,5‐morphorinedione, ?‐caprolactone, and L ‐lactide were explored in an effort to improve their mechanical properties, especially the elongation, and sufficient results were obtained with an approximate ratio of 3/11/86. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 302–316, 2002  相似文献   

7.
A novel series of thiazolothiazole (Tz)‐based copolymers, poly[9,9‐didecylfluorene‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P1), poly[9,9‐dioctyldibenzosilole‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P2), and poly[4,4′‐bis(2‐ethylhexyl)‐dithieno[3,2‐b:2′,3′‐d]silole‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P3), were synthesized for the use as donor materials in polymer solar cells (PSCs). The field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers were investigated. The results suggest that the donor units in the copolymers significantly influenced the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the copolymers. The band gaps of the copolymers were in the range of 1.80–2.14 eV. Under optimized conditions, the Tz‐based polymers showed power conversion efficiencies (PCEs) for the PSCs in the range of 2.23–2.75% under AM 1.5 illumination (100 mW/cm2). Among the three copolymers, P1, which contained a fluorene donor unit, showed a PCE of 2.75% with a short‐circuit current of 8.12 mA/cm2, open circuit voltage of 0.86 V, and a fill factor (FF) of 0.39, under AM 1.5 illumination (100 mW/cm2). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
New step‐growth graft block copolymers were synthesized. These two‐sided comb copolymers consisted of a poly(amic ester) (PAE) backbone and pendant poly(propylene oxide) (PPO) grafts. The copolymers were made via a macromonomer approach, in which the 4,6‐bischlorocarbonyl isophthalic acid bis[poly(propylene oxide)] ester macromonomer was synthesized through the reaction of hydroxyl‐terminated PPO oligomers with pyromellitic dianhydride and oxalyl chloride. This macromonomer was subsequently used in step‐growth polymerization with comonomers 4,6‐bischlorocarbonyl isophthalic acid diethyl ester, 2,5‐bischlorocarbonyl terephthalic acid diethyl ester, and 2,2‐bis[4‐ (4‐aminophenoxy)phenyl] hexafluoropropane, and this yielded PPO‐co‐PAE graft copolymers. Accordingly, we report the synthesis and characterization of the PPO oligomer, the PPO macromonomer, and their corresponding PPO‐co‐PAE graft copolymers. Graft copolymers with PPO concentrations of 3–26 wt % were synthesized. These polymers were thermally cured to produce polyimide/PPO composites. The thermolysis of these polyimide/PPO composites yielded porous polyimide films with porosities ranging of 4–22.5%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2266–2275, 2005  相似文献   

9.
Novel polyfluorene copolymers with pendant hydroxyl groups, poly[2,7‐(9,9‐dihexylfluorene)‐2,7‐(9,9‐bis(6‐hydroxyhexyl)fluorene)‐co‐2,7‐(9,9‐dihexylfluorene)‐1,4‐phenylene] (PFP‐OH) and poly[2,7‐(9,9‐dihexylfluorene)‐2,7‐(9,9‐bis(6‐hydroxyhexyl)fluorene)‐co‐2,7‐(9,9‐dihexylfluorene)‐4,7‐(2,1,3‐benzothiadiazole)] (PFBT‐OH) were prepared. Acid‐catalyzed polycondensations of tetraethoxysilane were carried out in the presence of these polymers to obtain homogeneous hybrids. Photoluminescence spectra of these hybrids suggested the polymers were immobilized in silica matrix retaining their π‐conjugated structures. Further, hybrids of coat film were prepared utilizing perhydropolysilazane as a silica precursor. Their optical properties were examined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Two alternating poly[3‐(hex‐1‐enyl)thiophene‐co‐thiophene]s, Pa (with 77% trans‐isomer and 23% cis‐isomer) and Pb (with 100% trans‐isomer), were synthesized by the coupling of 2,5‐dibromo‐3‐hex‐1‐enyl‐thiophene to 2,5‐bis(tributylstannyl)thiophene via a Stille reaction and compared with poly(3‐hexylthiophene‐co‐thiophene) ( P1 ) to study the effect of changing the carbon(α)–carbon(β) single bond into a carbon–carbon double bond on the properties of the polymers. From P1 to Pb and to Pa , the ultraviolet–visible absorption peaks of the polymers were slightly redshifted, and their electrochemical bandgaps decreased by 0.05–0.1 eV. X‐ray diffraction analysis indicated that Pa had a better lamellar structure than Pb . The hole mobilities of the three polymers, determined with the space‐charge‐limited current model, were 5.23 × 10?6 ( P1 ), 2.34 × 10?4 ( Pb ), and 7.02 × 10?4 cm2/V s ( Pa ). The power conversion efficiencies (PCEs) of polymer solar cells based on the three polymers were 0.87 ( P1 ), 1.16 ( Pb ), and 1.70% ( Pa ). The increase in the hole mobility and PCE revealed the important effect of changing the carbon(α)–carbon(β) single bond into a carbon–carbon double bond on the properties of polythiophene derivatives containing 3‐alkylthiophene. The strategy used in this work enlarges the thinking to obtain novel, efficient donor polymers for optoelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 629–638, 2007  相似文献   

11.
2,3‐Diaryl substituted maleimides as model compounds of conjugated maleimide polymers [poly(RMI‐alt‐Ar) and poly(RMI‐co‐Ar)] were synthesized from 2,3‐dibromo‐N‐substituted maleimide (DBrRMI) [R= cyclohexyl (DBrCHMI) and n‐hexyl (DBrHMI)] and aryl boronic acid using palladium catalysts. To clarify structures of conjugated polymer containing maleimide units at the main chain, 13C NMR spectra of 2‐aryl or 2,3‐diaryl substituted maleimides were compared with those of N‐substituted maleimide polymers. Copolymers obtained with DBrRMI via Suzuki‐Miyaura cross‐coupling polymerizations or Yamamoto coupling polymerizations were dehalogenated structures at the terminal end. This dehalogenation may contribute to the low polymerizability of DBrRMIs. On the other hand, the π‐conjugated compounds showed high solubility in common organic solvents. The N‐substituents of maleimide cannot significantly affect the photoluminescence spectra of 2,3‐diaryl substituted maleimides derivatives. The fluorescence spectra of poly(RMI‐alt‐Ar) and poly(RMI‐co‐Ar) varied with N‐substituents of the maleimide ring. When exposed to ultraviolet light of wavelength 352 nm, a series of 1,4‐phenylene‐ and/or 2,5‐thienylene‐based copolymers containing N‐substituted maleimide derivatives fluoresced in a yellow to blue color. It was found that photoluminescence emissions and electronic state of π‐conjugated maleimide derivatives were controlled by aryl‐ and N‐substituents, and maleimide sequences of copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A series of poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide) P(NIPAM‐co‐NHMA) copolymers were firstly synthesized via free radical polymerization. Then, the hydrophobic, photosensitive 2‐diazo‐1,2‐naphthoquinone (DNQ) molecules were partially and randomly grafted onto P(NIPAM‐co‐NHMA) backbone through esterification to obtain a triple‐stimuli (photo/pH/thermo) responsive copolymers of P(NIPAM‐co‐NHMA‐co‐DNQMA). UV‐vis spectra showed that the lower critical solution temperature (LCST) of P(NIPAM‐co‐NHMA) ascended with increasing hydrophilic comonomer NHMA molar fraction and can be tailored by pH variation as well. The LCST of the P(NIPAM‐co‐NHMA) went down firstly after DNQ modification and subsequently shifted to higher value after UV irradiation. Meanwhile, the phase transition profile of P(NIPAM‐co‐NHMA‐co‐DNQMA) could be triggered by pH and UV light as expected. Thus, a triple‐stimuli responsive copolymer whose solution properties could be, respectively, modulated by temperature, light, and pH, has been achieved. These stimuli‐responsive properties should be very important for controlled release delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2763–2773, 2009  相似文献   

13.
Development of effective organocatalysts for the living ring‐opening polymerization (ROP) of lactones is highly desired for the preparation of biocompatible and biodegradable polyesters with controlled microstructures and physical properties. Herein, a new class of hydrogen‐bond donating bisurea catalysts is reported for the ROP of lactones under solvent‐free conditions. ROP of lactones mediated by the bisurea/7‐methyl‐1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (MTBD) catalyst exhibits a living/controlled manner, affording the polymers and copolymers with the well‐defined structure, predictable molecular weight, narrow molecular weight distribution, and high selectivity for monomer at low catalyst loadings at ambient temperature. The possible mechanism of bisurea/MTBD‐catalyzed ROP of lactones is proposed, in which the bisurea activates the carbonyl group of lactones while MTBD facilitates the nucleophilic attack of the initiating/propagating alcohol by hydrogen bonding. Moreover, the poly(ε‐caprolactone‐co‐δ‐valerolactone) [P(CL‐co‐VL)] random copolymers with various compositions were synthesized using the bisurea/MTBD catalyst. The measurements of thermal properties and crystalline structure demonstrate that the CL and VL units are cocrystallized in the crystalline phase of P(CL‐co‐VL) copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 90–100  相似文献   

14.
1H,1H,2H,2H‐Perfluorooctyloxymethylstyrene (FS) was prepared and copolymerized with chloromethylstyrene (CMS). Conventional radical copolymerization of both these aromatic monomers led to poly(CMS‐co‐FS) random copolymers for which CMS was shown to be more reactive than the fluorinated comonomer. Their controlled radical copolymerization based on degenerative transfer, namely iodine transfer polymerization (ITP), led to various poly(CMS)‐b‐poly(FS) block copolymers. Molecular weights of poly(CMS‐co‐FS) copolymers reached 33,000 g mol?1 while those of poly(CMS)‐b‐ poly(FS) block copolymers were 22,000 g mol?1. Their composition ranged from 18 to 61 mol.% in FS. These copolymers were modified via a cationization step, aiming at replacing the chlorine atom in CMS unit by a trimethylammonium group, leading to the formation of cationic sites. The resulting functionalized copolymers exhibited different solubilities. If both copolymerization techniques led to water‐insoluble copolymers, the block architecture enabled incorporating lower FS proportion, resulting in more cationic sites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

16.
Anionically charged fluorescent conjugated polyelectrolytes of poly{[4,7‐(2,1,3‐benzothiadiazole)‐alt‐1,4‐phenylene]‐co‐[2,5‐bis(4‐sulfonatobutoxy)‐alt‐1,4‐phenylene]} ( P1 ) and poly{[4,7‐(bis(thiophen‐2‐yl)benzo‐2,1,3‐thiadiazole)‐alt‐1,4‐phenylene]‐co‐[2,5‐bis(4‐sulfonatobutoxy)‐alt‐1,4‐phenylene]} ( P2 ) were synthesized by Suzuki crosscoupling polymerization in the presence of a palladium catalyst. The conjugated polyelectrolytes with sulfonate groups, as efficient signal amplifying reporters, were carefully designed to be soluble in water over the entire pH range examined and interact with proteins through intermolecular forces. The polymers exhibited blue emission in aqueous solutions but green or red emission in solid form depending on the conjugation length due to intermolecular exciton migration. The anionic conjugated polymers exhibited blue‐to‐green or blue‐to‐red changes in fluorescence upon exposure to charged proteins, indicating that the polymers have potential applications in fluorescent array systems for protein. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
Sodium salts of water‐soluble polymers poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(hexyloxy)‐1,4‐phenylene]} ( P1 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dodecyloxy)‐1,4‐phenylene]} ( P2 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dibenzyloxy)‐1,4‐phenylene]} ( P3 ), poly[2‐hexyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P4 ), and poly[2‐dodecyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P5 )] were synthesized with Suzuki coupling reactions and fully characterized. The first group of polymers ( P1 – P3 ) with symmetric structures gave lower absorption maxima [maximum absorption wavelength (λmax) = 296–305 nm] and emission maxima [maximum emission wavelength (λem) = 361–398 nm] than asymmetric polymers P4 (λmax = 329 nm, λem = 399 nm) and P5 (λmax = 335 nm, λem = 401 nm). The aggregation properties of polymers P1 – P5 in different solvent mixtures were investigated, and their influence on the optical properties was examined in detail. Dynamic light scattering studies of the aggregation behavior of polymer P1 in solvents indicated the presence of aggregated species of various sizes ranging from 80 to 800 nm. The presence of alkoxy groups and 3‐sulfonatopropoxy groups on adjacent phenylene rings along the polymer backbone of the first set hindered the optimization of nonpolar interactions. The alkyl chain crystallization on one side of the polymer chain and the polar interactions on the other side allowed the polymers ( P4 and P5 ) to form a lamellar structure in the polymer lattice. Significant quenching of the polymer fluorescence upon the addition of positively charged viologen derivatives or cytochrome‐C was also observed. The quenching effect on the polymer fluorescence confirmed that the newly synthesized polymers could be used in the fabrication of biological and chemical sensors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3763–3777, 2006  相似文献   

18.
Polymers containing thiol‐reactive maleimide groups on their side chains have been synthesized by utilization of a novel methacrylate monomer containing a masked maleimide. Diels‐Alder reaction between furan and maleimide was adapted for the protection of the reactive maleimide double bond prior to polymerization. AIBN initiated free radical polymerization was utilized for synthesis of copolymers containing masked maleimide groups. No unmasking of the maleimide group was evident under the polymerization conditions. The maleimide groups in the side chain of the polymers were unmasked into their reactive form by utilization of retro Diels‐Alder reaction. This cycloreversion was monitored by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and 1H and 13C NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4545–4551, 2007  相似文献   

19.
The synthesis of new random poly(arylene‐vinylene)s containing the electron withdrawing 3,7‐dibenzothiophene‐5,5‐dioxide unit was achieved by the Suzuki–Heck cascade polymerization reaction. The properties of poly[9,9‐bis(2‐ethylhexyl)‐2,7‐fluorenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P1 ) and poly[1,4‐bis(2‐ethylhexyloxy)‐2,5‐phenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P2 ) were compared with those of terpolymers obtained by combining the fluorene, dibenzothiophene, and 1,4‐bis(2‐ethylexyloxy)benzene in 20/40/40 ( P3 ), 50/25/25 ( P4 ), and 80/10/10 ( P5 ) molar ratios. The polymers were characterized by 1H NMR and IR, whereas their thermal properties were investigated by TGA and DSC. Polymers P1–5 are blue–green emitters in solution (λem between 481 and 521 nm) whereas a profound red shift observed in the solid state is emission (λem from 578 to 608 nm) that can be attributed both to the charge transfer stabilization exerted by the polar medium and to intermolecular interactions occurring in the solid state. Cyclic voltammetry permitted the evaluation of the ionization potentials and also revealed a quasi‐reversible behavior in the reduction scans for the polymers ( P1–4 ) containing the higher amounts of 3,7‐dibenzothiophene‐5,5‐dioxide units. Electroluminescent devices with both ITO/PEDOT‐PSS/ P1–5 /Ca/Al (Type I) and ITO/PEDOT‐PSS/ P1–5 /Alq3/Ca/Al (Type II) configuration were fabricated showing a yellow to yellow–green emission. In the case of P4 , a luminance of 1835 cd/m2 and an efficiency of 0.25 cd/A at 14 V were obtained for the Type II devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2093–2104, 2009  相似文献   

20.
Copolymers of a liquid crystalline monomer, 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene (MPCS), with St and MMA were prepared by free radical polymerization at low conversion in chlorobenzene with 2,2′‐azobisisobutyronitrile (AIBN) as initiator. The copolymers of poly(MPCS‐co‐St) and poly(MPCS‐co‐MMA) were characterized by 1H NMR and GPC. The monomer reactivity ratios were determined by using the extended Kelen–Tudos (EKT) method. Structural parameters of the copolymers were obtained from the possibility statistics and monomer reactivity ratios. The influence of MPCS content in copolymers on the glass transition temperatures of copolymers was investigated by DSC. The thermal stabilities of the two copolymer systems increased with an increase of the molar fraction of MPCS in the copolymers. The liquid crystalline behavior of the copolymers was also investigated using DSC and POM. The results revealed that the copolymers with high MPCS molar contents exhibited liquid crystalline behaviors. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2666–2674, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号