首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the solution reaction of NaBH4/(NH4)2SO4 in tetraglyme to form borazine, polymeric aminoborane (NH2BH2)x has been isolated as a white powder. The powder was characterized by thermal gravimetric analysis/differential scanning calorimetry, infrared and mass spectroscopies, and powder X‐ray diffraction. Solid‐state 15N and 11B nuclear magnetic resonance firmly proved that the chain‐like poly(aminoborane) evolved a partially condensed B3N3 ring structure by dehydrogenative condensation between chains at 200 °C. Pyrolysis of the polymer in a nitrogen stream up to 1400 °C led to a 75% yield of hexagonal boron nitride with an interlayer spacing of 3.37 Å. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Evidence for the existence of primitive life forms such as lichens and fungi can be based upon the formation of oxalates. These oxalates form as a film like deposit on rocks and other host matrices. The anhydrous oxalate mineral moolooite CuC2O4 as the natural copper(II) oxalate mineral is a classic example. Another example of a natural oxalate is the mineral wheatleyite Na2Cu2+(C2O4)2·2H2O. High resolution thermogravimetry coupled to evolved gas mass spectrometry shows decomposition of wheatleyite at 255°C. Two higher temperature mass losses are observed at 324 and 349°C. Higher temperature mass losses are observed at 819, 833 and 857°C. These mass losses as confirmed by mass spectrometry are attributed to the decomposition of tennerite CuO. In comparison the thermal decomposition of moolooite takes place at 260°C. Evolved gas mass spectrometry for moolooite shows the gas lost at this temperature is carbon dioxide. No water evolution was observed, thus indicating the moolooite is the anhydrous copper(II) oxalate as compared to the synthetic compound which is the dihydrate.  相似文献   

3.
TG-FTIR studies on lignin-based polycaprolactones   总被引:1,自引:0,他引:1  
Thermal degradation behaviour of alcoholysis lignin-based polycaprolactones (ALPCL's) with various molar ratios of β-caprolactone monomer to each hydroxyl group of lignin (CL/OH ratios) was studied by TG-FTIR. The temperature was varied from 20 to 800°C. Thermal degradation temperatures (Td's) of alcoholysis lignin (AL) and ALPCL's were determined using TG curves. Td increased with increasing CL/OH ratio, suggesting that AL becomes thermally stable after the derivatization with PCL chains. Mass residue (MR) at 500°C was also determined using TG curves. MR values decreased with increasing CL/OH ratios. The evolved gases formed by thermal degradation of ALPCL's at various temperatures were simultaneously analyzed by FTIR. The main peaks observed for the samples are as follows: wavenumber (assignment): 1160 cm-1 (vC-O-), 1260 cm-1(-C(=O)-O-C-), 1517 and 1617 cm-1 (vC=C), 1770 cm-1 (vC=O), 2345 cm-1 (vCO2), 2945 cm-1 (vC-H) and 3700 cm-1 (vOH). It was found that the peak intensities for C=O, CH, C-O-C, OH peaks, which were observed for evolved gases at 430°C, increased with increasing CL/OH ratios, suggesting that the evolved gases at 430°C are mainly formed by thermal degradation of PCL chains in ALPCL's. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A study of fixation of caesium on crystalline titania by co-precipitation was carried out. A maximum loading of ∼46wt% of caesium was found to be incorporated in the titania matrix. High leach-resistivity of Cs cations was observed to be in the order of 10−6–10−8 g.m−2.d−1 by Soxhlet flow refluxing at 97 °C of the composite material calcined at 800, 1000 °C for 48 hours. The analysis of X-ray powder diffractions of the composite materials revealed that cesium was fixed in the crystal lattice of host titania with the formation of new mineral phases of CsTi4O9 and Cs2Ti5O11. The results, taken together, implicate that a better fixation of caesium on titania can be achieved by calcination at 1000 °C for 48 hours.  相似文献   

5.
Cashew gum, an exudate polysaccharide from Anacardium occidentale L., was purified by alcohol precipitation. Thermal behavior of this polysaccharide was investigated by simultaneous TG/DTG/DSC-FT-IR analysis performed under nitrogen and air atmospheres and heating rate of 10 K min?1. TG/DTG curves under oxidative atmosphere were similar to the curves under N2 atmosphere until 340 °C, however, it was observed a profile difference due to the presence of two DTG peaks at 430 and 460 °C. DSC results showed endothermic and exothermic events corroborating with TG/DTG curves. The Simultaneous TG/DSC-FTIR analysis revealed that evolved gases from the decomposition of cashew gum sample were CO2, CO, and groups: O–H, C–H, C=O, C–C, and C–O, in nitrogen and air atmospheres. Energy dispersive X-ray fluorescence analysis from the ash showed that the elements in larger amounts are CaO, MgO, and K2O.  相似文献   

6.
The Prussian blue analog K0.28Co1.36[Fe(CN)6]?·?XH2O was prepared by standard chemical co-precipitation. The precipitate was filtered and dried in a vacuum oven at room temperature, 80°C, and 120°C. The powder X-ray diffraction measurement indicates a typical face-centered cubic pattern. The diffraction peaks show a slight shift to higher angle with increasing annealing temperatures, a signature of lattice contraction, which is mainly related to the inner charge transfer from FeIII to CoII. The value of χ?·?T is variable and dependent on temperature. The temperature dependence of χ ?1 shows a large deviation from the Curie–Weiss law. The behavior could result from a charge-transfer-induced spin transition. Isothermal magnetization curves also suggest that the inner charge-transfer spin transition depends on the annealing temperature.  相似文献   

7.
The products evolved during the thermal decomposition of kaolinite–urea intercalation complex were studied by using TG–FTIR–MS technique. The main gases and volatile products released during the thermal decomposition of kaolinite–urea intercalation complex are ammonia (NH3), water (H2O), cyanic acid (HNCO), carbon dioxide (CO2), nitric acid (HNO3), and biuret ((H2NCO)2NH). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved products CO2, H2O, NH3, HNCO are mainly released at the temperature between 200 and 450 °C with a maximum at 355 °C; (2) up to 600 °C, the main evolved products are H2O and CO2 with a maximum at 575 °C. It is concluded that the thermal decomposition of the kaolinite–urea intercalation complex includes two stages: (a) thermal decomposition of urea in the intercalation complex takes place in four steps up to 450 °C; (b) the dehydroxylation of kaolinite and thermal decomposition of residual urea occurs between 500 and 600 °C with a maximum at 575 °C. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanation have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials and its intercalation complexes.  相似文献   

8.
The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.  相似文献   

9.
Glass transition in the system poly(methyl methacrylate)/compressed gas was studied as a function of the gas pressure p using a high-pressure Tian-Calvet heat flow calorimeter. Measurements were made on PMMA-CH4-C2H4, and ;-CO2 at pressures to 200 atm. All three gases plasticize the polymer leading to depression of the glass transition temperature Tg. Trends in the Tg depression were the same as those reported for the solubility of these gases in PMMA; the higher the solubility the larger the depression in Tg. CO2 was found to be the most effective plasticizer producing a depression of about 40°C at a pressure of about 37 atm. In the low-pressure limit, the pressure coefficient of the glass transition temperature (dTg/dp) was found to be about −0.2°C atm-1 for PMMA-CH4, the same as that observed for polystyrene-CH4. For PMMA-C2H4, the pressure coefficient was −0.7°C atm-1, which is lower than the value of −0.9°C atm-1 observed for PS-C2H4. The pressure coefficient for PMMA-CO2 was found to be about −1.2°C atm-1, which is larger than the value of −0.9°C atm-1 observed for PS-CO2. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Reduction of zirconium dioxide with boron carbide and nanofibrous carbon in argon yielded a highly dispersed powder of zirconium diboride. Characteristics of zirconium diboride powders were examined by various analytical methods. The material obtained is represented by a single phase, zirconium diboride. Powder particles are for the most part aggregated. The average size of particles and aggregates is 10.9–12.9 μm with a wide size distribution. The specific surface area of the samples is 1.8–3.6 m2 g–1. The oxidation of zirconium diboride begins at a temperature of 640°C The optimal synthesis parameters were determined: ZrO2: B4C: C molar ratio of 2: 1: 3 (in accordance with stoichiometry), process temperature 1600–1700°C, synthesis duration 20 min.  相似文献   

11.
Ferrite coated apatite magnetic nano-material was synthesized by a co-precipitation method and applied in removal of Eu(III) ions from aqueous solutions. The sample was firstly characterized using Fourier transform infrared spectroscopy, thermogravimetric analyses, deferential thermal analysis, X-ray powder diffraction, surface area by nitrogen adsorption and scanning electron microscopy. The results of physicochemical properties indicated that the synthesized magnetic nano-adsorbent had a crystalline structure and possessed a surface area amounted to 85.11 mg?1. Further, it was found to have high thermal resistance up to 600 °C and mean particle size of about 63 nm. The kinetic of Eu(III) sorption indicated that equilibrium state was attained within 12 h with using 5 mg as an appropriate nano-adsorbent weight. The sorption process was pH and ionic strength dependent. The maximum adsorbed amount of Eu(III) was attained at pH 2.5 with value reached to 157.14 mg g?1. Desorption of Eu(III) from loaded samples was studied using various eluents and maximum recovery was obtained using FeCl3 solution.  相似文献   

12.
Manganese–cobalt–cerium oxide (Mn–Co–Ce–Ox) catalysts were synthesized by the co-precipitation method and tested for activity in low-temperature catalytic oxidation of NO in the presence of excess O2. With the best Mn–Co–Ce mixed-oxide catalyst, approximately 80 % NO conversion was achieved at 150 °C and a space velocity of 35,000 h?1. The effect of reaction conditions (reaction temperature, volume fractions of NO and O2, gas hourly space velocity (GHSV), and catalyst stability) was investigated. The optimum reaction temperature was 150 °C. Increasing the O2 content above 3 % results in almost no improvement of NO oxidation. This catalyst enables highly effective removal of NO within a wide range of GHSV. Furthermore, the stability of the Me–Co–Ce–Ox catalyst was excellent; no noticeable decrease of NO conversion was observed in 40 h.  相似文献   

13.
Ethylene glycol may be obtained selectively from dimethyl oxalate by hydrogenation in homogeneous phase in the presence of Ru2(CO)4(CH3COO)2(PtPr3)2. In order to avoid decomposition of the substrate the hydrogenation must be carried out at 120 °C to completely convert the oxalic diester and then at 180 °C to hydrogenate the intermediate methyl glycolate.  相似文献   

14.
Spherical Li[Ni0.5Mn0.3Co0.2]O2 was prepared by both the continuous hydroxide co-precipitation method and continuous carbonate co-precipitation method under different calcined temperatures. The physical properties and electrochemical behaviors of Li[Ni0.5Mn0.3Co0.2]O2 prepared by two methods were characterized by X-ray diffraction, scanning electron microscope, and electrochemical measurements. It has been found that different preparation methods will result in the differences in the morphology (shape, particle size, and tap density), structure stability, and the electrochemical characteristics (shape of initial charge/discharge curve, cycle stability, and rate capability) of the final product Li[Ni0.5Mn0.3Co0.2]O2. The physical and electrochemical properties of the spherical Li[Ni0.5Mn0.3Co0.2]O2 prepared by continuous hydroxide co-precipitation is apparently superior to the one prepared by continuous carbonate co-precipitation method. The optimal sample prepared by continuous hydroxide co-precipitation at 820 °C exhibits a hexagonally ordered layer structure, high special discharge capacity, good capacity retention, and excellent rate capability. It delivers high initial discharge capacity of 175.2 mAh g?1 at 0.2 C rate between 3.0 and 4.3 V, and the capacity retention of 98.8 % can be maintained after 50 cycles. While the voltage range is broadened up to 2.5 and 4.6 V vs. Li+/Li, the special discharge capacities at 0.2 C, 0.5 C, 1 C, 2 C, 5 C, and 10 C rates are as high as 214.3, 205.0, 198.3, 183.3, 160.1 and 135.2 mAh g?1, respectively.  相似文献   

15.
A novel co-precipitation and annealing route to the large-quantity synthesis of boron nitride nanotubes (BNNTs), using amorphous boron powder, iron nitrate nonahydrate (Fe(NO3)3·9H2O) and urea (CO(NH2)2) as the raw materials, was demonstrated. An intermediate Fe(OH)3·B was firstly prepared through a co-precipitation process and then annealed in flowing ammonia atmosphere at 1200 °C. It was found that the heat treatment at 800 °C during the annealing process could favor the growth of BNNTs. The BNNTs had an average diameter of 70 nm and possessed bamboo and quasi-cylindrical structures. The annealing temperature greatly affected the formation of BNNTs. Only BN particles could be obtained at lower temperature (e.g. 1100 °C), whereas thorn-like nanosheet-decorated BNNTs were fabricated at higher temperature (e.g. 1300 °C). A combination mechanism of solid–liquid–solid (SLS) and vapor–liquid–solid (VLS) model was suggested to be responsible for the growth of BNNTs.  相似文献   

16.
The thermometric titration of titanium(III) chloride with oxalic acid was carried out at 25°C. The molar ratio of titanium (III): oxalate was found to be 1:2, which indicates the formation of Ti(C2O4)2 ion in acid media. The limiting value of the heat of reaction between Ti(III) ion and oxalic acid in hydrochloric acid solution was found to be −1.5 Kcal mole−1 at 25°C.  相似文献   

17.
Volatile mercury compounds have been speciated in gases evolved from fermentation of sewage sludge as well as municipal waste. The species were trapped by sequential sampling, using a noble‐metal trap in series with an activated‐carbon trap. Thermally desorbed Hg0 and (CH3)2Hg were separated by GC at 70 °C and detected by cold vapour atomic fluorescence spectroscopy after thermal reduction. The amounts of mercury detected in the sewage gas correspond to concentrations in the range 50–110 ng m−3 for both species whereas the deposit gases were found to contain only elemental mercury. Monomethylmercury species could not be positively identified in any of the gas samples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The preparations of some bisoxalatobisfluoroaluminates having the general formula M3[Al(C2O4)2F2.3H2O], where M=K+, Na+ and [Co(NH3)6]3+, and a bisoxalatobisfluorogallate, [Co(NH3)6] [Ga(C2O4)2F2].3H2O, are described. The compounds are characterised by chemical analyses, TGA, IR spectroscopy and X-ray powder photography. IR spectra support the presence of chelating oxalate ligands in these compounds. On isothermal heating at 100–130°C the compounds yield their respective anhydrous products.  相似文献   

19.
Thermal decomposition and structural characterization of three human kidney stones (KS1–KS3) extracted from patients of Eastern Bohemia have been carried out using X-ray powder diffraction systems (XRD), scanning electron microscope with energy dispersive X-ray micro analyser (SEM-EDX) and differential thermal analysis (DTA). The samples KS1 and KS2 solely consisted of calcium oxalate monohydrate (a.k.a. whewellite, CaC2O4·H2O). The third sample, KS3, was formed from calcium oxalate dihydrate (weddellite, CaC2O4·2H2O), calcium oxalate monohydrate, and hydroxyapatite (HA, Ca10(PO4)6(OH)2). Thermal measurements were carried out in the range between room temperature and 1,230 °C. XRD analysis was utilized to investigate the change of phases at 800 and 1,230 °C.  相似文献   

20.
Polyhedral oligomeric silsesquioxane (POSS) polymers were synthesized by the dehydrogenative condensation of (HSiO3/2)8 with water in the presence of diethylhydroxylamine followed by trimethylsilylation. Coating films were prepared by spin‐coating of the coating solution prepared by the dehydrogenative condensation of POSS. The hardness of the coating films was evaluated using a pencil‐hardness test and was found to increase up to 8H with increases in the curing temperature. Free‐standing film and silica gel powder were prepared by aging the coating solution at room temperature. The silica gel powder was subjected to heat treatment under air atmosphere to show a specific surface area of 440 m2 g−1 at 100 °C, which showed a maximum at 400 °C as 550 m2 g−1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号