首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the problems of scheduling jobs on parallel identical machines where an optimal schedule is defined as one that gives the smallest maximum tardiness (or the minimum number of tardy jobs) among the set of schedules with optimal total flow-time (the sum of the completion times of all jobs). We show that these problems are unary NP-Hard, develop lower bounds for these two secondary criteria problems, and describe heuristic algorithms for their solution. Results of a computational study show that the proposed heuristic algorithms are quite effective and efficient in solving these hierarchical criteria scheduling problems.  相似文献   

2.
We consider general properties of isomorphic scheduling problems that constitute a new class of pairs of mutually related scheduling problems. Any such a pair is composed of a scheduling problem with fixed job processing times and its time-dependent counterpart with processing times that are proportional-linear functions of the job starting times. In order to introduce the class formally, first we formulate a generic scheduling problem with fixed job processing times and define isomorphic problems by a one-to-one transformation of instances of the generic problem into instances of time-dependent scheduling problems with proportional-linear job processing times. Next, we prove basic properties of isomorphic scheduling problems and show how to convert polynomial algorithms for scheduling problems with fixed job processing times into polynomial algorithms for proportional-linear counterparts of the original problems. Finally, we show how are related approximation algorithms for isomorphic problems. Applying the results, we establish new worst-case results for time-dependent parallel-machine scheduling problems and prove that many single- and dedicated-machine time-dependent scheduling problems with proportional-linear job processing times are polynomially solvable.  相似文献   

3.
In this article, we consider three decomposition techniques for permutation scheduling problems. We introduce a general iterative decomposition algorithm for permutation scheduling problems and apply it to the permutation flow shop scheduling problem. We also develop bounds needed for this iterative decomposition approach and compare its computational requirements to that of the traditional branch and bound algorithms. Two heuristic algorithms based on the iterative decomposition approach are also developed. extensive numerical study indicates that the heuristic algorithms are practical alternatives to very costly exact algorithms for large flow shop scheduling problems.  相似文献   

4.
This paper deals with the bin packing problem and the multiprocessor scheduling problem both with an additional constraint specifying the maximum number of jobs in each type to the processed on a processor. Since these problems are NP-complete, various approximation algorithms are proposed by generalizing those algorithms known for the ordinary bin packing and multiprocessor scheduling problems. The worst-case performance of the proposed algorithms are analyzed, and some computational results are reported to indicate their average case behavior.  相似文献   

5.
This paper studies a single machine scheduling problem simultaneously with deteriorating jobs and learning effects. The objectives are to minimize the makespan and the number of tardy jobs, respectively. Two polynomial time algorithms are proposed to solve these problems optimally.  相似文献   

6.
Rollout Algorithms for Stochastic Scheduling Problems   总被引:8,自引:0,他引:8  
Stochastic scheduling problems are difficult stochastic control problems with combinatorial decision spaces. In this paper we focus on a class of stochastic scheduling problems, the quiz problem and its variations. We discuss the use of heuristics for their solution, and we propose rollout algorithms based on these heuristics which approximate the stochastic dynamic programming algorithm. We show how the rollout algorithms can be implemented efficiently, with considerable savings in computation over optimal algorithms. We delineate circumstances under which the rollout algorithms are guaranteed to perform better than the heuristics on which they are based. We also show computational results which suggest that the performance of the rollout policies is near-optimal, and is substantially better than the performance of their underlying heuristics.  相似文献   

7.
Optimizing construction project scheduling has received a considerable amount of attention over the past 20 years. As a result, a plethora of methods and algorithms have been developed to address specific scenarios or problems. A review of the methods and algorithms that have been developed to examine the area of construction schedule optimization (CSO) is undertaken. The developed algorithms for solving the CSO problem can be classified into three methods: mathematical, heuristic and metaheuristic. The application of these methods to various scheduling problems is discussed and implications for future research are identified.  相似文献   

8.
In this paper, we consider a modified shifting bottleneck heuristic for complex job shops. The considered job shop environment contains parallel batching machines, machines with sequence-dependent setup times and reentrant process flows. Semiconductor wafer fabrication facilities (Wafer Fabs) are typical examples for manufacturing systems with these characteristics. Our primary performance measure is total weighted tardiness (TWT). The shifting bottleneck heuristic uses a disjunctive graph to decompose the overall scheduling into scheduling problems for single tool groups. The scheduling algorithms for these scheduling problems are called subproblem solution procedures (SSPs). In previous research, only subproblem solution procedures based on dispatching rules have been considered. In this paper, we are interested in how much we can gain in terms of TWT if we apply more sophisticated subproblem solution procedures like genetic algorithms for parallel machine scheduling. We conduct simulation experiments in a dynamic job shop environment in order to assess the performance of the suggested subproblem solution procedures. It turns out that using near to optimal subproblem solution procedures leads in many situations to improved results compared to dispatching-based subproblem solution procedures.  相似文献   

9.
This paper considers two problem classes, namely packing and project scheduling problems that are important to researchers as well as practitioners. The two problem categories are described, and a classification is given for the different kinds of packing problems and project scheduling concepts. While both problem classes are different with respect to their fields of application, similarities of their mathematical structures are examined. It is shown that all packing problems considered here are special cases of models for project scheduling. The aim is to indicate which project scheduling models can be used to capture the different types of packing problems. Finally, some implications for research on optimisation algorithms for these two problem classes are discussed, and the applicability of the results of this work in practice are pointed out.  相似文献   

10.
A new Lagrangian relaxation (LR) approach is developed for job shop scheduling problems. In the approach, operation precedence constraints rather than machine capacity constraints are relaxed. The relaxed problem is decomposed into single or parallel machine scheduling subproblems. These subproblems, which are NP-complete in general, are approximately solved by using fast heuristic algorithms. The dual problem is solved by using a recently developed “surrogate subgradient method” that allows approximate optimization of the subproblems. Since the algorithms for subproblems do not depend on the time horizon of the scheduling problems and are very fast, our new LR approach is efficient, particularly for large problems with long time horizons. For these problems, the machine decomposition-based LR approach requires much less memory and computation time as compared to a part decomposition-based approach as demonstrated by numerical testing.  相似文献   

11.
In many practical applications, vehicle scheduling problems involve more complex evaluation criteria than simple distance or travel time minimization. Scheduling to minimize delays between the accumulation and delivery of correspondence represents a class of vehicle scheduling problems, where: the evaluation of candidate solutions is costly, there are no efficient schemes for evaluation of partial solutions or perturbations to existing solutions, and dimensionality is limiting even for problems with relatively few locations. Several features of genetic algorithms (GA's) suggest that they may have advantages relative to alternative heuristic solution algorithms for such problems. These include ease of implementation through efficient coding of solution alternatives, simultaneous emphasis on global as well as local search, and the use of randomization in the search process. In addition, a GA may realize advantages usually associated with interactive methods by replicating the positive attributes of existing solutions in the search process, without explicitly defining or measuring these attributes. This study investigates these potential advantages through application of a GA to a service level based vehicle scheduling problem. The procedure is demonstrated for a vehicle scheduling problem with 15 locations where the objective is to minimize the time between the accumulation of correspondence at each location and delivery to destination locations. The results suggest that genetic algorithms can be effective for finding good quality scheduling solutions with only limited search of the solution space.  相似文献   

12.
A Robust Genetic Algorithm for Resource Allocation in Project Scheduling   总被引:9,自引:0,他引:9  
Genetic algorithms have been applied to many different optimization problems and they are one of the most promising metaheuristics. However, there are few published studies concerning the design of efficient genetic algorithms for resource allocation in project scheduling. In this work we present a robust genetic algorithm for the single-mode resource constrained project scheduling problem. We propose a new representation for the solutions, based on the standard activity list representation and develop new crossover techniques with good performance in a wide sample of projects. Through an extensive computational experiment, using standard sets of project instances, we evaluate our genetic algorithm and demonstrate that our approach outperforms the best algorithms appearing in the literature.  相似文献   

13.
平行机半在线排序问题研究(Ⅱ)   总被引:15,自引:1,他引:14  
继续介绍半在线平行机排序问题的研究进展.主要介绍第二类、第三类半在线模型.研究两个(或两个以上)半在线模型间关系:复合与限制.文章最后给出了一些待研究的问题。  相似文献   

14.
This article considers flow shop scheduling problems with a learning effect. By the learning effect, we mean that the processing time of a job is defined by a function of its position in a processing permutation. The objective is to minimize the total weighted completion time. Some heuristic algorithms by using the optimal permutations for the corresponding single machine scheduling problems are presented, and the worst-case bound of these heuristics are also analyzed.  相似文献   

15.
16.
The Coordination of Scheduling and Batch Deliveries   总被引:2,自引:0,他引:2  
This paper considers several scheduling problems where deliveries are made in batches with each batch delivered to the customer in a single shipment. Various scheduling costs, which are based on the delivery times of the jobs, are considered. The objective is to minimize the scheduling cost plus the delivery cost, and both single and parallel machine environments are considered. For many combinations of these, we either provide efficient algorithms that minimize total cost or show that the problem is intractable. Our work has implications for the coordination of scheduling with batch delivery decisions to improve customer service.  相似文献   

17.
以包头某钢铁线材企业生产实际调度问题为背景,研究了一类带组换装时间的单机调度问题.由于该问题是NP难的,本文提出了一类适合该问题的禁忌搜索算法.此外,本文将问题性质引入了禁忌搜索算法以进一步提高算法寻优性能,降低算法运行时间.本文提出的算法在随机问题和实际问题上均进行了测试,实验结果表明,本文提出的算法能在不到10秒的时间内获得实际问题的一个近似最优解.  相似文献   

18.
The different problems of sequencing production operations in parallel processor shops of a textile company are considered in this paper. The complexity of these problems depends on: (1) the machine changeover times which occur when the changeovers cannot be realized in parallel during processing times, and (2) the operation due dates which have to be at best respected when the workshops do not constitute stocks. The objective is to minimize mean completion time or mean tardiness. This paper models these different scheduling problems. It presents some tools to solve these problems, and it explains the choice of algorithms issued from the graph theory and employed in industrial studies. Some results are shown.  相似文献   

19.
This paper considers single machine scheduling problems with group technology (GT) and deteriorating jobs. We consider the case of jobs whose processing times are a simple linear function of their starting time. The two objectives of scheduling problems are to minimize the weighted sum of squared completion times and the weighted sum of squared waiting times, respectively. We also provide polynomial time algorithms to solve these problems.  相似文献   

20.
We consider scheduling problems with learning/deterioration effects and time-dependent processing times on a single machine, with or without due date assignment considerations. By reducing them to a special assignment problem on product matrices, we solve all these problems in near-linear time. This improves the time complexity of previous algorithms for some scheduling problems and establishes the fast polynomial solvability for several other problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号