首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper considers a batch arrival \(\hbox {M}^{\mathrm {x}}/\hbox {G}/1\) queue with impatient customers. We consider two different model variants. In the first variant, customers in the same batch are assumed to have the same patience time, and patience times associated with batches are i.i.d. according to a general distribution. In the second variant, patience times of customers in the same batch are independent, and they follow a general distribution. Both variants are related to an M/G/1 queue in which the service time of a customer depends on its waiting time. Our main focus is on the virtual and actual waiting times, and on the loss probability of customers.  相似文献   

2.
In this paper we analyze two single server queueing-inventory systems in which items in the inventory have a random common life time. On realization of common life time, all customers in the system are flushed out. Subsequently the inventory reaches its maximum level S through a (positive lead time) replenishment for the next cycle which follows an exponential distribution. Through cancellation of purchases, inventory gets added until their expiry time; where cancellation time follows exponential distribution. Customers arrive according to a Poisson process and service time is exponentially distributed. On arrival if a customer finds the server busy, then he joins a buffer of varying size. If there is no inventory, the arriving customer first try to queue up in a finite waiting room of capacity K. Finding that at full, he joins a pool of infinite capacity with probability γ (0 < γ < 1); else it is lost to the system forever. We discuss two models based on ‘transfer’ of customers from the pool to the waiting room / buffer. In Model 1 when, at a service completion epoch the waiting room size drops to preassigned number L ? 1 (1 < L < K) or below, a customer is transferred from pool to waiting room with probability p (0 < p < 1) and positioned as the last among the waiting customers. If at a departure epoch the waiting room turns out to be empty and there is at least one customer in the pool, then the one ahead of all waiting in the pool gets transferred to the waiting room with probability one. We introduce a totally different transfer mechanism in Model 2: when at a service completion epoch, the server turns idle with at least one item in the inventory, the pooled customer is immediately taken for service. At the time of a cancellation if the server is idle with none, one or more customers in the waiting room, then the head of the pooled customer go to the buffer directly for service. Also we assume that no customer joins the system when there is no item in the inventory. Several system performance measures are obtained. A cost function is discussed for each model and some numerical illustrations are presented. Finally a comparison of the two models are made.  相似文献   

3.
We consider an s-server priority system with a protected and an unprotected queue. The arrival rates at the queues and the service rate may depend on the number n of customers being in service or in the protected queue, but the service rate is assumed to be constant for n > s. As soon as any server is idle, a customer from the protected queue will be served according to the FCFS discipline. However, the customers in the protected queue are impatient. If the offered waiting time exceeds a random maximal waiting time I, then the customer leaves the protected queue after time I. If I is less than a given deterministic time, then he leaves the system, else he will be transferred by the system to the unprotected queue. The service of a customer from the unprotected queue will be started if the protected queue is empty and more than a given number of servers become idle. The model is a generalization of the many-server queue with impatient customers. The global balance conditions seem to have no explicit solution. However, the balance conditions for the density of the stationary state process for the subsystem of customers being in service or in the protected queue can be solved. This yields the stability conditions and the probabilities that precisely n customers are in service or in the protected queue. For obtaining performance measures for the unprotected queue, a system approximation based on fitting impatience intensities is constructed. The results are applied to the performance analysis of a call center with an integrated voice-mail-server.  相似文献   

4.
Peköz  Erol A.  Lapré  Michael 《Queueing Systems》2001,37(4):337-347
We study a multi-class queue with a learning server who becomes stochastically faster with each subsequent customer served of the same type in a row, and returns to some baseline speed each time he switches to a different type of customer. We show under some conditions that customer waiting time is larger (in the increasing convex ordering sense) with server learning than in a queue with iid service times having the same marginal service distribution as the learning server. An easy to evaluate inequality for the mean stationary waiting time is derived from this in the case of Poisson arrivals, and results in more general settings are given. The primary tool used in the proofs is the supermodularity of the delay in queue as a function of previous service times.  相似文献   

5.
In this article, we consider a single-server, finite-capacity queue with random bulk service rule where customers arrive according to a discrete-time Markovian arrival process (D-MAP). The model is denoted by D-MAP/G Y /1/M where server capacity (bulk size for service) is determined by a random variable Y at the starting point of services. A simple analysis of this model is given using the embedded Markov chain technique and the concept of the mean sojourn time of the phase of underlying Markov chain of D-MAP. A complete solution to the distribution of the number of customers in the D-MAP/G Y /1/M queue, some computational results, and performance measures such as the average number of customers in the queue and the loss probability are presented.  相似文献   

6.
In this paper we consider a single server queue in which arrivals occur according to a Poisson process and each customer's service time is exponentially distributed. The server works according to the gated process-sharing discipline. In this discipline, the server provides service to a batch of at mostm customers at a time. Once a batch of customers begins service, no other waiting customer can receive service until all members of the batch have completed their service. For this queue, we derive performance characteristics, such as waiting time distribution, queue length distribution etc. For this queue, it is possible to obtain the mean conditional response time for a customer whose service time is known. This conditional response time is a nonlinear function (as opposed to the linear case for the ordinary processor-sharing queue). A special case of the queue (wherem=) has an interesting and unusual solution. For this special case, the size of the batch for service is a Markov chain whose steady state distribution can be explicitly written down. Apart from the contribution to the theory of Markov chains and queues, the model may be applicable to scheduling of computer and communication systems.  相似文献   

7.
A single server queue with Poisson arrivals and exponential service times is studied. The system suffers disastrous breakdowns at an exponential rate, resulting in the loss of all running and waiting customers. When the system is down, it undergoes a repair mechanism where the repair time follows an exponential distribution. During the repair time any new arrival is allowed to join the system, but the customers become impatient when the server is not available for a long time. In essence, each customer, upon arrival, activates an individual timer, which again follows an exponential distribution with parameter ξ. If the system is not repaired before the customer’s timer expires, the customer abandons the queue and never returns. The time-dependent system size probabilities are presented using generating functions and continued fractions.  相似文献   

8.
本文研究了带有止步和中途退出的M^x/M/1/N多重休假排队系统。顾客成批到达,到达后每批中的顾客,或者以概率b决定进入队列等待服务,或者以概率1-b止步(不进入系统)。顾客进入系统后可能因为等待的不耐烦而在没有接受服务的情况下离开系统(中途退出)。系统中一旦没有顾客,服务员立即进行多重休假。首先,利用马尔科夫过程理论建立了系统稳态概率满足的方程组。其次,在利用高等代数相关知识证明了相关矩阵可逆性的基础上,利用矩阵解法求出了稳态概率的矩阵解,并得到了系统的平均队长、平均等待队长以及顾客的平均损失率等性能指标。  相似文献   

9.
Shimkin  Nahum  Mandelbaum  Avishai 《Queueing Systems》2004,47(1-2):117-146
We consider the modelling of abandonment from a queueing system by impatient customers. Within the proposed model, customers act rationally to maximise a utility function that weights service utility against expected waiting cost. Customers are heterogeneous, in the sense that their utility function parameters may vary across the customer population. The queue is assumed invisible to waiting customers, who do not obtain any information regarding their standing in the queue during their waiting period. Such circumstances apply, for example, in telephone centers or other remote service facilities, to which we refer as tele-queues. We analyse this decision model within a multi-server queue with impatient customers, and seek to characterise the Nash equilibria of this system. These equilibria may be viewed as stable operating points of the system, and determine the customer abandonment profile along with other system-wide performance measures. We provide conditions for the existence and uniqueness of the equilibrium, and suggest procedures for its computation. We also suggest a notion of an equilibrium based on sub-optimal decisions, the myopic equilibrium, which enjoys favourable analytical properties. Some concrete examples are provided to illustrate the modelling approach and analysis. The present paper supplements previous ones which were restricted to linear waiting costs or homogeneous customer population.  相似文献   

10.
研究了带有止步和中途退出的M~x/M/1/N单重工作休假排队系统.顾客成批到达,到达后每批中的顾客,或者以概率b决定进入队列等待服务,或者以概率1-b止步(不进入系统).顾客进入系统后可能因为等待的不耐烦而在没有接受服务的情况下离开系统(中途退出).系统中一旦没有顾客,服务员立即进入单重工作休假.首先,利用马尔科夫过程理论建立了系统稳态概率满足的方程组.其次利用矩阵解法求出了稳态概率的矩阵解并得到了系统的平均队长、平均等待队长以及顾客的平均消失概率等性能指标.最后通过数值例子分析了工作休假时的低服务率η和休假率θ这两个参数对系统平均队长的影响.  相似文献   

11.
研究了具有不耐烦顾客的M/M/1休假排队系统,其中休假时间服从位相分布.当顾客在休假时间到达系统,顾客则会因为等待变得不耐烦.服务员休假结束后立刻开始工作.如果在顾客不耐烦时间段内,系统的休假还没有结束,顾客就会离开系统不再回来.建立的模型为水平相依QBD拟生灭过程,通过利用BrightTaylor算法得到系统的稳态概率解.同时还得到一些重要的性能指标.最后通过数据实例验证了我们的结论.  相似文献   

12.
Crowdsourcing is getting popular after a number of industries such as food, consumer products, hotels, electronics, and other large retailers bought into this idea of serving customers. In this paper, we introduce a multi-server queueing model in the context of crowdsourcing. We assume that two types, say, Type 1 and Type 2, of customers arrive to a c-server queueing system. A Type 1 customer has to receive service by one of c servers while a Type 2 customer may be served by a Type 1 customer who is available to act as a server soon after getting a service or by one of c servers. We assume that a Type 1 customer will be available for serving a Type 2 customer (provided there is at least one Type 2 customer waiting in the queue at the time of the service completion of that Type 1 customer) with probability \(p, 0 \le p \le 1\). With probability \(q = 1 - p\), a Type 1 customer will opt out of serving a Type 2 customer provided there is at least one Type 2 customer waiting in the system. Upon completion of a service a free server will offer service to a Type 1 customer on an FCFS basis; however, if there are no Type 1 customers waiting in the system, the server will serve a Type 2 customer if there is one present in the queue. If a Type 1 customer decides to serve a Type 2 customer, for our analysis purposes that Type 2 customer will be removed from the system as Type 1 customer will leave the system with that Type 2 customer. Under the assumption of exponential services for both types of customers we study the model in steady state using matrix analytic methods and establish some results including explicit ones for the waiting time distributions. Some illustrative numerical examples are presented.  相似文献   

13.
In this paper, we consider a Geo/Geo/1 retrial queue with non-persistent customers and working vacations. The server works at a lower service rate in a working vacation period. Assume that the customers waiting in the orbit request for service with a constant retrial rate, if the arriving retrial customer finds the server busy, the customer will go back to the orbit with probability q (0≤q≤1), or depart from the system immediately with probability $\bar{q}=1-q$ . Based on the necessary and sufficient condition for the system to be stable, we develop the recursive formulae for the stationary distribution by using matrix-geometric solution method. Furthermore, some performance measures of the system are calculated and an average cost function is also given. We finally illustrate the effect of the parameters on the performance measures by some numerical examples.  相似文献   

14.
In this paper we present a detailed analysis of a single server Markovian queue with impatient customers. Instead of the standard assumption that customers perform independent abandonments, we consider situations where customers abandon the system simultaneously. Moreover, we distinguish two abandonment scenarios; in the first one all present customers become impatient and perform synchronized abandonments, while in the second scenario we exclude the customer in service from the abandonment procedure. Furthermore, we extend our analysis to the M/M/c queue under the second abandonment scenario.  相似文献   

15.
Liu  Xin 《Queueing Systems》2019,91(1-2):49-87

We study a double-ended queue consisting of two classes of customers. Whenever there is a pair of customers from both classes, they are matched and leave the system. The matching is instantaneous following the first-come–first-match principle. If a customer cannot be matched immediately, he/she will stay in a queue. We also assume customers are impatient with generally distributed patience times. Under suitable heavy traffic conditions, we establish simple linear asymptotic relationships between the diffusion-scaled queue length process and the diffusion-scaled offered waiting time processes and show that the diffusion-scaled queue length process converges weakly to a diffusion process that admits a unique stationary distribution.

  相似文献   

16.
研究了带有止步和中途退出的Mx/M/R/N同步休假排队系统.顾客成批到达.到达的顾客如果看到服务员正在休假或者全忙,他或者以概率b决定进入队列等待服务,或者以概率1-b止步(不进入系统).系统根据一定的原则以概率nk在未止步的k个顾客中选择n个进入系统.在系统中排队等待服务的顾客可能因为等待的不耐烦而在没有接受服务的情况下离开系统(中途退出).系统中一旦没有顾客,R个服务员立即进行同步多重休假.首先,利用马尔科夫过程理论建立了系统稳态概率满足的方程组.其次,在证明了相关矩阵可逆性的基础上,利用矩阵解法求出了系统稳态概率的明显表达式,并得到了系统的平均队长、平均等待队长及顾客的平均损失率等性能指标.  相似文献   

17.
We study a single server queue with batch arrivals and general (arbitrary) service time distribution. The server provides service to customers, one by one, on a first come, first served basis. Just after completion of his service, a customer may leave the system or may opt to repeat his service, in which case this customer rejoins the queue. Further, just after completion of a customer's service the server may take a vacation of random length or may opt to continue staying in the system to serve the next customer. We obtain steady state results in explicit and closed form in terms of the probability generating functions for the number of customers in the queue, the average number of customers and the average waiting time in the queue. Some special cases of interest are discussed and some known results have been derived. A numerical illustration is provided.  相似文献   

18.
In this paper we consider a single server queueing system with Poisson input, general service and a waiting room that allows only a maximum of b customers to wait at any time. A minimum of a customers are required to start a service and the server goes for a vacation whenever he finds less than a customers in the waiting room after a service. If the server returns from a vacation to find less than a customers waiting, he begins another vacation immediately. Using the theory of regenerative processes we derive expressions for the time dependent system size probabilities at arbitrary epochs.  相似文献   

19.
Nam Kyoo Boots  Henk Tijms 《TOP》1999,7(2):213-220
This paper considers theM/M/c queue in which a customer leaves when its service has not begun within a fixed interval after its arrival. The loss probability can be expressed in a simple formula involving the waiting time probabilities in the standardM/M/c queue. The purpose of this paper is to give a probabilistic derivation of this formula and to outline a possible use of this general formula in theM/M/c retrial queue with impatient customers. This research was supported by the INTAS 96-0828 research project and was presented at the First International Workshop on Retrial Queues, Universidad Complutense de Madrid, Madrid, September 22–24, 1998.  相似文献   

20.
Uri Yechiali 《Queueing Systems》2007,56(3-4):195-202
Consider a system operating as an M/M/c queue, where c=1, 1<c<∞, or c=∞. The system as a whole suffers occasionally a disastrous breakdown, upon which all present customers (waiting and served) are cleared from the system and lost. A repair process then starts immediately. When the system is down, inoperative, and undergoing a repair process, new arrivals become impatient: each individual customer, upon arrival, activates a random-duration timer. If the timer expires before the system is repaired, the customer abandons the queue never to return. We analyze this model and derive various quality of service measures: mean sojourn time of a served customer; proportion of customers served; rate of lost customers due to disasters; and rate of abandonments due to impatience.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号