首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
Phase rotation beamforming (PRBF) is a commonly-used digital receive beamforming technique. However, due to its high computational requirement, it has traditionally been supported by hardwired architectures, e.g., application-specific integrated circuits (ASICs) or more recently field-programmable gate arrays (FPGAs). In this study, we investigated the feasibility of supporting software-based PRBF on a multi-core DSP. To alleviate the high computing requirement, the analog front-end (AFE) chips integrating quadrature demodulation in addition to analog-to-digital conversion were defined and used. With these new AFE chips, only delay alignment and phase rotation need to be performed by DSP, substantially reducing the computational load. We implemented the delay alignment and phase rotation modules on a Texas Instruments C6678 DSP with 8 cores. We found it takes 200 μs to beamform 2048 samples from 64 channels using 2 cores. With 4 cores, 20 million samples can be beamformed in one second. Therefore, ADC frequencies up to 40 MHz with 2:1 decimation in AFE chips or up to 20 MHz with no decimation can be supported as long as the ADC-to-DSP I/O requirement can be met. The remaining 4 cores can work on back-end processing tasks and applications, e.g., color Doppler or ultrasound elastography. One DSP being able to handle both beamforming and back-end processing could lead to low-power and low-cost ultrasound machines, benefiting ultrasound imaging in general, particularly portable ultrasound machines.  相似文献   

2.
Schneider FK  Yoo YM  Agarwal A  Koh LM  Kim Y 《Ultrasonics》2006,44(3):265-271
In this paper, we present a new quadrature demodulation filter to reduce hardware complexity in digital phase rotation beamforming. Due to its low sensitivity to phase delay errors, digital quadrature demodulation is commonly used in ultrasound machines. However, since it requires two lowpass filters for each channel to remove harmonics, the direct use of conventional finite impulse response (FIR) filters in ultrasound machines is computationally expensive and burdensome. In our new method, an efficient multi-stage uniform coefficient (MSUC) filter is utilized to remove harmonic components in phase rotation beamforming. In comparison with the directly implemented FIR (DI-FIR) and the previously-proposed signed-power-of-two FIR (SPOT-FIR) lowpass filters, the proposed MSUC filter reduces the necessary hardware resources by 93.9% and 83.9%, respectively. In simulation, the MSUC filter shows a negligible degradation in image quality. The proposed method resulted in comparable spatial and contrast resolution to the DI-FIR approach in the phantom study. These preliminary results indicate that the proposed quadrature demodulation filtering method could significantly reduce the hardware complexity in phase rotation beamforming while maintaining comparable image quality.  相似文献   

3.
Yoon C  Lee Y  Chang JH  Song TK  Yoo Y 《Ultrasonics》2011,51(7):795-802
Effective receive beamforming in medical ultrasound imaging is important for enhancing spatial and contrast resolution. In current ultrasound receive beamforming, a constant sound speed (e.g., 1540 m/s) is assumed. However, the variations of sound speed in soft tissues could introduce phase distortions, leading to degradation in spatial and contrast resolution. This degradation becomes even more severe in imaging fatty tissues (e.g., breast) and with obese patients. In this paper, a mean sound speed estimation method where phase variance of radio-frequency channel data in the region of interest is evaluated is presented for improving spatial and contrast resolution. The proposed estimation method was validated by the Field II simulation and the tissue mimicking phantom experiments. In the simulation, the sound speed of the medium was set to 1450 m/s and the proposed method was capable of capturing this value correctly. From the phantom experiments, the −18-dB lateral resolution of the point target at 50 mm obtained with the estimated mean sound speed was improved by a factor of 1.3, i.e., from 3.9 mm to 2.9 mm. The proposed estimation method also provides an improvement of 0.4 in the contrast-to-noise ratio, i.e., from 2.4 to 2.8. These results indicate that the proposed mean sound speed estimation method could enhance the spatial and contrast resolution in the medical ultrasound imaging systems.  相似文献   

4.
Guenther DA  Walker WF 《Ultrasonics》2012,52(3):387-401
This paper proposes a novel receive beamformer architecture for broadband imaging systems that uses unique finite impulse response (FIR) filters on each channel. The conventional delay-and-sum (DAS) beamformer applies receive apodization by weighting the signal on each receive channel prior to beam summation. Our proposed FIR beamformer passes the focused receive radio frequency (RF) signals through multi-tap FIR filters on each receive channel prior to summation. The receive FIR filters are constructed to maximize the contrast resolution of the system’s spatial response. The broadband FIR beamformer produces spatial point spread functions (PSFs) with narrower mainlobe widths and lower sidelobe levels than spatial PSFs produced by the conventional DAS beamformer.We present simulation results showing that FIR filters of modest tap lengths (3-7) can yield marked improvement in image contrast and point resolution. Specifically we show that 7-tap FIR filters can reduce sidelobe and grating lobe energy by 30 dB and improve contrast resolution by as much as 20 dB compared to conventional apodization profiles. This improvement in contrast resolution comes at the expense of a decrease in beamformer sensitivity. We investigate the effects of phase aberration and show in simulation results that the multi-tap FIR beamformer outperforms the unaberrated DAS beamformer by 8-12 dB even in the presence of moderate aberration characterized by a root-mean-square strength of 28 ns and a full-width at half-maximum correlation length of 3.6 mm. We show experimental results wherein multi-tap FIR filters decrease sidelobe energy in the resulting 2D spatial response while achieving a narrow mainlobe. We also show results where the FIR beamformer improves the contrast to noise ratio (CNR) in simulated B-mode cyst images by more than 4 dB. Our algorithm has the potential to significantly improve ultrasound beamforming in any application where the system response is reasonably well characterized. Furthermore, this algorithm can be used to increase contrast and resolution in one-way beamforming systems such as acousto-optic and opto-acoustic imaging.  相似文献   

5.
平面波成像通过单次全孔径发射-接收即可获取整幅图像,将成像帧频显著地提升至1000帧/秒以上.然而,平面波成像过程中发射的非聚焦波束将导致回波信号信噪比降低,进而使图像的分辨率和对比度变差.通过多角度相干复合成像技术可以改善平面波成像的图像质量,但是会以牺牲帧频为代价.因此研究人员们开始将新型波束合成技术引入平面波成像...  相似文献   

6.
Diffusion weighted magnetic resonance imaging (DWI) has been mostly acquired using single-shot echo-planar imaging (ss EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in ss EPI especially for abdominal imaging, even with the advances in parallel imaging. A novel method of reduced Field of View ss EPI (rFOV ss EPI) has achieved high resolution DWI in human carotid artery, spinal cord with reduced blurring and higher spatial resolution than conventional ss EPI, but it has not been used to pancreas imaging. In the work, comparisons between the full FOV ss-DW EPI and rFOV ss-DW EPI in image qualities and ADC values of pancreatic tumors and normal pancreatic tissues were performed to demonstrate the feasibility of pancreatic high resolution rFOV DWI. There were no significant differences in the mean ADC values between full FOV DWI and rFOV DWI for the 17 subjects using b = 600 s/mm2 (P = 0.962). However, subjective scores of image quality was significantly higher at rFOV ss DWI (P = 0.008 and 0.000 for b-value = 0 s/mm2 and 600 s/mm2 respectively). The spatial resolution of DWI for pancreas was increased by a factor of over 2.0 (from almost 3.0 mm/pixel to 1.25 mm/pixel) using rFOV ss EPI technique. Reduced FOV ss EPI can provide good DW images and is promising to benefit applications for pancreatic diseases.  相似文献   

7.
Jeong JS  Chang JH  Shung KK 《Ultrasonics》2012,52(6):730-739
In an ultrasound image-guided High Intensity Focused Ultrasound (HIFU) surgery, reflected HIFU waves received by an imaging transducer should be suppressed for real-time simultaneous imaging and therapy. In this paper, we investigate the feasibility of pulse compression scheme combined with notch filtering in order to minimize these HIFU interference signals. A chirp signal modulated by the Dolph-Chebyshev window with 3-9 MHz frequency sweep range is used for B-mode imaging and 4 MHz continuous wave is used for HIFU. The second order infinite impulse response notch filters are employed to suppress reflected HIFU waves whose center frequencies are 4 MHz and 8 MHz. The prototype integrated HIFU/imaging transducer that composed of three rectangular elements with a spherically con-focused aperture was fabricated. The center element has the ability to transmit and receive 6 MHz imaging signals and two outer elements are only used for transmitting 4 MHz continuous HIFU wave. When the chirp signal and 4 MHz HIFU wave are simultaneously transmitted to the target, the reflected chirp signals mixed with 4 MHz and 8 MHz HIFU waves are detected by the imaging transducer. After the application of notch filtering with pulse compression process, HIFU interference waves in this mixed signal are significantly reduced while maintaining original imaging signal. In the single scanline test using a strong reflector, the amplitude of the reflected HIFU wave is reduced to −45 dB. In vitro test, with a sliced porcine muscle shows that the speckle pattern of the restored B-mode image is close to that of the original image. These preliminary results demonstrate the potential for the pulse compression scheme with notch filtering to achieve real-time ultrasound image-guided HIFU surgery.  相似文献   

8.
When cutaneous fat layers are in the ultrasound imaging region, the phase aberration caused by the fat layers induce image distortion as well as spatial resolution degradation. The phase aberration may complicate clinical procedures particularly when ultrasound imaging is employed for spatial positioning of medical devices like a biopsy needle or HIFU. To compensate the fat layer effects more precisely in beamforming, an inclined-fat-layer model has been established from the magnetic resonance images of the same imaging region as in the ultrasound scanning. We have verified utility of the fat layer model by taking images of a metal needle put into an inclined-fat-layer mimicking phantom. The ultrasound images taken with a 128-element linear phase array operating at 6 MHz have shown better resolution and less distortion when receive beamforming was performed with the phase delay data derived from the inclined-fat-layer model.  相似文献   

9.
An adaptive photoacoustic image reconstruction technique that combines coherence factor (CF) weighting and the minimum variance (MV) method is introduced. The backprojection method is widely used to reconstruct photoacoustic tomography images. Owing to the scattering of light, the quality of the photoacoustic imaging can be degraded. CF, an adaptive weighting technique, is known to improve the lateral resolution of photoacoustic images. In addition, an MV adaptive beamforming method can further improve the image quality by suppressing signals from off-axis directions. Experimental studies are performed to quantify the spatial resolution and contrast of the adaptive photoacoustic beamforming methods.  相似文献   

10.
Ho MC  Lin JJ  Shu YC  Chen CN  Chang KJ  Chang CC  Tsui PH 《Ultrasonics》2012,52(2):215-222
This study explored the feasibility of using the ultrasound Nakagami image to assess the degree of liver fibrosis in rats. The rat has been widely used as a model in investigations of liver fibrosis. Ultrasound grayscale imaging makes it possible to observe fibrotic rat livers in real time. Statistical analysis of the envelopes of signals backscattered from rat livers may provide useful clues about the degree of liver fibrosis. The Nakagami-model-based image has been shown to be useful for characterizing scatterers in tissues by reflecting the echo statistics, and hence the Nakagami image may serve as a functional imaging tool for quantifying rat liver fibrosis. To validate this idea, fibrosis was induced in each rat liver (n = 21) by an intraperitoneal injection of 0.5% dimethylnitrosamine. Livers were excised from rats for in vitro ultrasound scanning using a single-element transducer. The backscattered-signal envelopes of the acquired raw ultrasound signals were used for Nakagami imaging. The Metavir score determined by a pathologist was used to histologically quantify the degree of liver fibrosis. It was found that the Nakagami image could be used to distinguish different degrees of liver fibrosis in rats, since the average Nakagami parameter increased from 0.55 to 0.83 as the fibrosis score increased from 0 (i.e., normal) to 4. This correlation may be due to liver fibrosis in rats involving an increase in the concentration of local scatterers and the appearance of the periodic structures or clustering of scatterers that would change the backscattering statistics. The current findings indicate that the ultrasound Nakagami image has great potential as a functional imaging tool to complement the use of the conventional B-scan in animal studies of liver fibrosis.  相似文献   

11.
It is desired that the same imaging functional modules such as beamformation, envelope detection, and digital scan conversion (DSC) are employed for the efficient development of a cross-sectional photoacoustic (PA) and ultrasound (US) dual-modality imaging system. The beamformation can be implemented using either delay-and-sum beamforming (DAS-BF) or adaptive beamforming methods, each with their own advantages and disadvantages for the dual-modality imaging. However, the DSC is always problematic because it causes blurring the fine details of an image, e.g., edges. This paper demonstrates that the pixel based focusing method is suitable for the dual-modality imaging; beamformation is directly conducted on each display pixel and thus DSC is not necessary. As a result, the artifacts by DSC are no longer a problem, so that the proposed method is capable of providing the maximum spatial resolution achievable by DAS-BF. The performance of the proposed method was evaluated through simulation and ex vivo experiments with a microcalcification-contained breast specimen, and the results were compared with those from DAS-BF and adaptive beamforming methods with DSC. The comparison demonstrated that the proposed method effectively overcomes the disadvantages of each beamforming method.  相似文献   

12.
刘飞  魏雅喆  韩平丽  刘佳维  邵晓鹏 《物理学报》2019,68(8):84201-084201
针对实时广域高分辨率成像需求,充分利用具有对称结构的多层共心球透镜视场大且各轴外视场成像效果一致性好的特点,设计基于共心球透镜的多尺度广域高分辨率计算成像系统.该系统基于计算成像原理,通过构建像差优化函数获得光学系统设计参数,结合球形分布的次级相机阵列进行全局性优化,提高系统性能的同时有效简化光学设计过程、降低系统设计难度.系统稳定性测试结果表明,该成像系统的MTF(modulation transmission function)值在截止频率处接近衍射极限,弥散斑均方根恒小于探测器像元尺寸,整机实景实时成像效果良好,无视觉可见畸变.该系统不仅有效解决了传统成像中广域和高分辨率成像矛盾的问题,而且为计算光学成像系统设计奠定了一定研究基础.  相似文献   

13.
Ultrasound Nakagami parametric imaging is a useful tool for tissue characterization. Previous literature has suggested using a square with side lengths corresponding to 3 times the transducer pulse length as the minimum window for constructing the Nakagami image. This criterion does not produce sufficiently smooth images for the Nakagami image to characterize homogeneous tissues. To improve image smoothness, we proposed window-modulated compounding (WMC) Nakagami imaging based on summing and averaging the Nakagami images formed using sliding windows with varying window side lengths from 1 to N times the transducer pulse length in 1 pulse length step. Simulations (the number densities of scatterers: 2–16 scatterers/mm2) and experiments on fully developed speckle phantoms (the scatterer diameters: 20–106 μm) were conducted to suggest an appropriate number of frames N and to evaluate the image smoothness and resolution by analyzing the full width at half maximum (FWHM) of the parameter distribution and the widths of the image autocorrelation function (ACF), respectively. In vivo ultrasound measurements on rat livers without and with cirrhosis were performed to validate the practical performance of the WMC Nakagami image in tissue characterization. The simulation results showed that using a range of N from 7 to 10 as the number of frames for image compounding reduces the estimation error to less than 5%. Based on this criterion, the Nakagami parameter obtained from the WMC Nakagami image increased from 0.45 to 0.95 after increasing the number densities of scatterers from 2 to 16 scatterers/mm2. The FWHM of the parameter distribution (bins = 40) was 13.5 ± 1.4 for the Nakagami image and 9.1 ± 1.43 for the WMC Nakagami image, respectively (p-value < .05). The widths of the ACF for the Nakagami and WMC Nakagami images were 454 ± 5.36 and 458 ± 4.33, respectively (p-value > .05). In the phantom experiments, we also found that the FWHM of the parameter distribution for the WMC Nakagami image was smaller than that of the conventional Nakagami image (p-value < .05), and there was no significant difference of the ACF width between the Nakagami and WMC Nakagami images (p-value > .05). In the animal experiments, the Nakagami parameters obtained from the WMC Nakagami image for normal and cirrhotic rat livers were 0.62 ± 0.08 and 0.92 ± 0.07, respectively (p-value < .05). The results demonstrated that the WMC technique significantly improved the image smoothness of Nakagami imaging without resolution degradation, giving Nakagami model-based imaging the ability to visualize scatterer properties with enhanced image quality.  相似文献   

14.
It has been a challenge to overcome the corneal curvature radius to design a full-pupil field, non-contact and high resolution corneal curved objective lens, which covers the cornea full-pupil field and has the ability to resolve corneal cells. In this paper, we report an optical design of a full-pupil field, non-contact corneal curved objective lens for high resolution cornea imaging. The advantages of this lens are that it has a wide field of view (FOV) with the corneal curved image surface, maintains the beam normal incidence, as well as non-contact lens imaging, and offers a cell-level lateral resolution of cornea structure. The analysis of optimization shows that the system achieves diffraction limit in a circular FOV of 4 mm diameter covering the full-pupil zone. The theoretical lateral resolution is about 2.5 μm with an image space NA of 0.16, which is sufficient to resolve corneal cells of 7 μm diameter, and the working distance is larger than 15 mm which is enough for a non-contact objective lens. So the optical design is effectively and efficiently meeting the demand of specifications.  相似文献   

15.
《Ultrasonics》2013,53(1):1-16
Synthetic aperture sequential beamforming (SASB) is a novel technique which allows to implement synthetic aperture beamforming on a system with a restricted complexity, and without storing RF-data. The objective is to improve lateral resolution and obtain a more depth independent resolution compared to conventional ultrasound imaging. SASB is a two-stage procedure using two separate beamformers. The initial step is to construct and store a set of B-mode image lines using a single focal point in both transmit and receive. The focal points are considered virtual sources and virtual receivers making up a virtual array. The second stage applies the focused image lines from the first stage as input data, and take advantage of the virtual array in the delay and sum beamforming. The size of the virtual array is dynamically expanded and the image is dynamically focused in both transmit and receive and a range independent lateral resolution is obtained. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The lateral resolution increases with a decreasing F#. Grating lobes appear if F#  2 for a linear array with λ-pitch. The performance of SASB with the virtual source at 20 mm and F# = 1.5 is compared with conventional dynamic receive focusing (DRF). The axial resolution is the same for the two methods. For the lateral resolution there is improvement in FWHM of at least a factor of 2 and the improvement at −40 dB is at least a factor of 3. With SASB the resolution is almost constant throughout the range. For DRF the FWHM increases almost linearly with range and the resolution at −40 dB is fluctuating with range. The theoretical potential improvement in SNR of SASB over DRF has been estimated. An improvement is attained at the entire range, and at a depth of 80 mm the improvement is 8 dB.  相似文献   

16.
For spectral-spatial EPR imaging, prior knowledge about the spatial support of an imaged object can be exploited in two ways. We can shrink the spatial field of view (FOV) to closely wrap the object in a sphere or reduce the sweep width in a projection dependent fashion. Use of a smaller spatial FOV with the same number of samples enhances spatial resolution by reducing voxel volume at the expense of signal-to-noise and a consequent degraded line-width resolution. We have developed another approach to define sweep width that prunes away the portions of the projection sweep with no signal. This reduces data acquisition time for the continuous wave (CW) EPR image proportional to the sweep width reduction. This method also avoids voxel volume reduction. Using the reduced-sweep method, we decreased the data acquisition time by 20% maintaining spatial and linewidth resolution.  相似文献   

17.
Open-configuration magnetic resonance imaging (MRI) systems are becoming increasingly desirable for musculoskeletal imaging and image-guided radiotherapy because of their non-claustrophobic configuration. However, geometric image distortion in large fields-of-view (FOV) due to field inhomogeneity and gradient nonlinearity hinders the practical applications of open-type MRI. We demonstrated the use of geometric distortion correction for increasing FOV in open MRI. Geometric distortion was modeled and corrected as a global polynomial function. The appropriate polynomial order was identified as the minimum difference between the coordinates of control points in the distorted MR image space and those predicted by polynomial modeling. The sixth order polynomial function was found to give the optimal value for geometric distortion correction. The area of maximum distortion was < 1 pixel with an FOV of 285 mm. The correction performance error was increased at most 1.2% and 2.9% for FOVs of 340 mm and ~ 400 mm compared with the FOV of 285 mm. In particular, unresolved distortion was generated by local deformation near the gradient coil center.  相似文献   

18.
Hu C  Zhang L  Cannata JM  Yen J  Shung KK 《Ultrasonics》2011,51(8):953-959
In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20–120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3 ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images acquired with this system show a spatial resolution of 146 μm (lateral) and 54 μm (axial). Images with excised rabbit and pig eyeball as well as mouse embryo were also acquired to demonstrate its imaging capability.  相似文献   

19.
Coded excitation can improve the signal-to-noise ratio (SNR) in ultrasound tissue harmonic imaging (THI). However, it could suffer from the increased sidelobe artifact caused by incomplete pulse compression due to the spectral overlap between the fundamental and harmonic components of ultrasound signal after nonlinear propagation in tissues. In this paper, three coded tissue harmonic imaging (CTHI) techniques based on bandpass filtering, power modulation and pulse inversion (i.e., CTHI-BF, CTHI-PM, and CTHI-PI) were evaluated by measuring the peak range sidelobe level (PRSL) with varying frequency bandwidths. From simulation and in vitro studies, the CTHI-PI outperforms the CTHI-BF and CTHI-PM methods in terms of the PRSL, e.g., −43.5 dB vs. −24.8 dB and −23.0 dB, respectively.  相似文献   

20.
We obtained the luminescence image of the GaAs (1 1 0) surface by scanning tunneling microscope-cathodoluminescence (STM-CL) spectroscopy, where low-energy (∼100 eV) electrons field emitted from the STM tip were used as a bright excitation source. The STM-CL image with high photon signal (1.25 × 104 cps) showed the dark image corresponding to the surface contamination in the STM image working as the nonradiative recombination centers of carriers. This dark image demonstrated the spatial resolution of about 100 nm in STM-CL spectroscopy of the GaAs (1 1 0) surface, which was determined by the field-emitted electron beam diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号