首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Using new high-resolution Fourier transform spectra recorded at the University of Denver in the 2-μm region, a new and more extended analysis of the 2nu(1) + nu(3) and 3nu(3) bands of nitrogen dioxide, located at 4179.9374 and 4754.2039 cm(-1), respectively, has been performed. The spin-rotation energy levels were satisfactorily reproduced using a theoretical model that takes into account both the Coriolis interactions between the spin-rotation energy levels of the (201) vibrational "bright" state with those of the (220) "dark" state. The interactions between the (003) bright state with the (022) dark state were similarly treated. The spin-rotation resonances within each of the NO(2) vibrational states were also taken into account. The precise vibrational energies and the rotational, spin-rotational, and coupling constants were obtained for the two dyads {(220), (201)} and {(022), (003)} of the (14)N(16)O(2) interacting states. From the experimental line intensities of the 2nu(1) + nu(3) and 3nu(3) bands, a determination of their vibrational transition moment constants was performed. A comprehensive list of line positions and line intensities of the {2nu(1) + 2nu(2), 2nu(1) + nu(3)} and the {2nu(2) + 2nu(3), 3nu(3)} interacting bands of (14)N(16)O(2) was generated. In addition, assuming the harmonic approximation and using the Hamiltonian constants derived in this work and in previous studies (A. Perrin, J.-M. Flaud, A. Goldman, C. Camy-Peyret, W. J. Lafferty, Ph. Arcas, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 60, 839-850 (1998)), we have generated synthetic spectra for the {(022), (003)}-{(040), (021), (002)} hot bands at 6.3 μm and for the {(220), (201)}-{(100), (020), (001)} hot bands at 3.5 μm, which are in good agreement with the observed spectra. Copyright 2000 Academic Press.  相似文献   

2.
The gas-phase IR spectrum of the nu(2) (A(1), 1610.33 cm(-1)) band of the deuterated isotopomer of diazirine, D(2)CN(2), a three-membered ring compound which belongs to the molecular symmetry point group C(2v), has been studied at a resolution of about 0.005 cm(-1). This vibrational mode which can be approximately described as N&dbond;N stretching is widely perturbed. This is due to various interactions with the tetrad consisting of the binary combinations nu(6) + nu(7) (A(1)), nu(7) + nu(9) (A(2)), nu(5) + nu(6) (B(2)), and nu(5) + nu(9) (B(1)), which form a relatively isolated pentad together with nu(2) in the wavenumber region 1560-1610 cm(-1). A simultaneous upper state analysis of nu(2) from a pentad model including these resonances has been performed and a set of spectroscopic parameters has been obtained. Since the four combination bands of the pentad are dark states, only band centers could be determined; in addition for nu(5) + nu(9) and nu(7) + nu(9) also the term (B - C)/2 has been obtained. A number of Coriolis interaction constants and the vibrational resonance (with nu(6) + nu(7)) parameter have been calculated as well. Copyright 2001 Academic Press.  相似文献   

3.
Spectra of (10)B monoisotopic diborane, B(2)H(6), have been recorded at high resolution (2-3 x 10(-3) cm(-1)) by means of Fourier transform spectroscopy in the region 700-1300 cm(-1). A thorough analysis of the nu(18) a-type, nu(14) c-type, and nu(5) symmetry-forbidden band has been performed. Of particular interest are the results concerning the nu(5) symmetry-forbidden band, which is observed only because it borrows intensity through an a-type Coriolis interaction with the very strong nu(18) infrared band located approximately 350 cm(-1) higher in wavenumber. The nu(5) band has been observed around 833 cm(-1) and consists of a well-resolved Q branch accompanied by weaker P- and R-branch lines. Very anomalous line intensities are seen, with the low K(a) transitions being vanishingly weak, and Raman-like selection rules observed. The determination of the upper state Hamiltonian constants proved to be difficult since the corresponding energy levels of each of the bands are strongly perturbed by nearby dark states. To account for these strong localized resonances, it was necessary to introduce the relevant interacting terms in the Hamiltonian. As a result the upper state energy levels were calculated satisfactorily, and precise vibrational energies and rotational and coupling constants were determined. In particular the following band centers were derived: nu(0) (nu(5)) = 832.8496(70) cm(-1), nu(0) (nu(14)) = 977.57843(70) cm(-1), and nu(0) (nu(18)) = 1178.6346(40) cm(-1). (Type A standard uncertainties (1varsigma) are given in parentheses.) Copyright 2000 Academic Press.  相似文献   

4.
A high-resolution analysis of the {nu(2), nu(3)} and {nu(4), nu(6)} bands of the two isotopomers of chloryl fluoride F(35)ClO(2) and F(37)ClO(2) has been carried out for the first time using simultaneously infrared spectra recorded around 16&mgr;m and 26&mgr;m with a resolution of ca. 0.003 cm(-1) and microwave and submillimeter-wave transitions occurring within the vibrational states 2(1), 3(1), 4(1), and 6(1). Taking into account the Coriolis resonances which link the rotational levels of the {2(1), 3(1)} and the {4(1), 6(1)} interacting states, it was possible to reproduce very satisfactorily the observed transitions and to determine accurate vibrational energies and rotational constants for the upper states 2(1), 3(1), 4(1), and 6(1) of both the (35)Cl and (37)Cl isotopic species. Copyright 2001 Academic Press.  相似文献   

5.
The energy levels upsilon(4)=1, upsilon(4)=2, and upsilon(4)=3 of DCCI have been analyzed by using the fundamental nu(4)(1) (470-520 cm(-1)) and the overtone 2nu(4)(0) (955-1005 cm(-1)) bands together with the hot bands 2nu(4)(0,2)<--nu(4)(1), 3nu(4)(1,3)<--2nu(4)(0,2), and 3nu(4)(1)<--nu(4)(1). In the case of HCCI the previously studied hot bands connected to nu(4) have been completed by adding 3nu(4)(1)<--nu(4)(1) into the analysis. The various l-type resonances have been taken into account in the analyses of both the isotopomers. Furthermore, the Coriolis resonance between the close-lying nu(3) and nu(4) of DCCI has been considered. Altogether, accurate values for the molecular constants and the resonance parameters have been obtained from simultaneous analysis and they have been compared with those from separate analyses for different levels. Copyright 2001 Academic Press.  相似文献   

6.
Stimulated emission pumping (SEP) spectroscopy has been used to examine a low energy region (E(vib) approximately 4400 cm(-1)) of &Xtilde;(1)Sigma(+)(g) acetylene at higher resolution than was possible in previous dispersed fluorescence studies. The expected bright state, nu(2) + 4nu(4), is observed to be coupled to the nearly degenerate 7nu(4) state by a Coriolis mechanism. A least-squares analysis yields values for zero-order vibrational energies, rotational constants, and a Coriolis-coupling coefficient that are all consistent with expectations. Calculated relative intensities of SEP transitions, accounting for interference due to axis-switching effects, are also consistent with observations. Implications of the observed Coriolis resonance with regard to global acetylene vibrational dynamics are also discussed. Copyright 2000 Academic Press.  相似文献   

7.
The vapor-phase infrared spectrum of monofluoroacetonitrile (CH(2)FCN) has been recorded at high resolution in the nu(4) band region (1363-1398 cm(-1)) using a tunable diode laser spectrometer. A detailed assignment of the rotational structure of the expected a-/b-hybrid band has been made for a-type transitions with K(a)相似文献   

8.
The high-resolution Fourier transform spectra of the D(2)O molecule have been recorded and assigned in the 4200-5700 cm(-1) region where the vibration-rotation bands 2nu(1), 2nu(3), nu(1) + nu(3), nu(1) + 2nu(2), 2nu(2) + nu(3), and 4nu(2) are located. The presence of numerous and very strong accidental perturbations between the states of the hexad makes it necessary to take into account not only ordinary resonance interactions of the Fermi, Darling-Dennison, and/or Coriolis types, but interactions between the states (v(1)v(2)v(3)) and (v(1) -/+ 2v(2) +/- 2v(3) +/- 1) as well. Parameters of all six vibrational states of the hexad were obtained from the fit of experimental energy values. Copyright 2000 Academic Press.  相似文献   

9.
High-resolution infrared spectra of the nu(6) (713 cm(-1)) band region of C(2)F(6) vapor have been recorded at several temperatures. Spectra at 77, 200, and 300 K were recorded using a Fourier transform spectrometer with unapodized resolutions of 0.0018 cm(-1) (200 and 300 K) and 0.008 cm(-1) (77 K). Spectra with rotational temperatures in the range 5-50 K were recorded in a supersonic jet using diode-laser absorption spectroscopy. The nu(6) band contains two clear sequences of hot-bands: one arises from the nu(4) torsional vibration at 67.5 cm(-1); the other, shorter, weaker progression is built on the doubly degenerate nu(9) vibration at 220 cm(-1). They lie to high and low wavenumbers of the fundamental band, respectively. Eleven series were assigned and fitted to these hot bands. A perturbed series in the nu(4) sequence is considered, by analogy with the infrared spectrum of C(2)H(6) vapor, to be caused by an xy-Coriolis interaction either between 5nu(4) and nu(9) + 2nu(4) in the ground state or, in the upper state, nu(6) + 5nu(4) with nu(6) + nu(9) + 2nu(4) or nu(6) + 5nu(4) with 2nu(8). One further series resolved only in the jet spectrum and lying very close to the fundamental is almost certainly due to the nu(6) fundamental of the isotopomer (13)C(12)CF(6). Copyright 2000 Academic Press.  相似文献   

10.
The rotational spectra of the unstable HCCCP molecule have been investigated in the millimeter-wave region for the main excited vibrational states which lie below 1000 cm(-1), namely nu(4) (C&bond;C stretch), nu(5) (HCC bend), nu(6) (CCC bend), nu(7) (CCP bend), 2nu(6), 2nu(7), 3nu(7), 4nu(7), nu(5) + nu(7), and nu(6) + nu(7). l-type resonance effects have been taken into account in the analysis of the spectra, so that the values of the anharmonicity constants x(L(66)), x(L(77)), x(L(57)), and x(L(67)) could be determined. The anharmonic interactions which couple the nu(4) state with nu(6) + nu(7), 2nu(6), and 4nu(7) have been also considered, yielding the unperturbed value of the alpha(4) vibration-rotation coupling constant. Copyright 2001 Academic Press.  相似文献   

11.
The infrared spectrum in the range 900-1230 cm(-1) including the fundamental bands nu(3) and nu(6) of CD(3)CN has been studied. The resolution attained was 0.0025 cm(-1) in the measurement on the Bruker 120 HR Fourier spectrometer in Oulu. About 4000 lines were assigned in the nu(6) band. For the weak nu(3) band, which has not been observed earlier directly, we were able to assign 206 lines in three subbands K=8-10. These lines become detectable due to the strong nu(3)/nu(6) Coriolis resonance. There is also an l(1,-2) resonance between nu(3) and nu(6), which made it possible to obtain a value 2.647721(50) cm(-1) for the axial rotational constant A(0), when D(0)(K) from force field calculations was applied. Different types of resonances with the overtone 3nu(8) and the combinations nu(4)+nu(8) and nu(7)+nu(8) were observed. A fit with a standard deviation of 0.0019 cm(-1) was attained by using a model of 10 different resonances. Copyright 2001 Academic Press.  相似文献   

12.
New high-resolution Fourier transform absorption spectra of an (15)N(16)O(2) isotopic sample of nitrogen dioxide were recorded at the University of Bremen in the 6.3-μm region. Starting from the results of a previous study [Y. Hamada, J. Mol. Struct. 242, 367-377 (1991)], a new and more extended analysis of the nu(3) band located at 1582.1039 cm(-1) has been performed. The spin-rotation energy levels were satisfactorily reproduced using a theoretical model which takes into account both the Coriolis interactions between the spin-rotation energy levels of the (001) vibrational state with those of the (020) and (100) states and the spin-rotation resonances within each of the NO(2) vibrational states. Precise vibrational energies and rotational, spin-rotation, and coupling constants were obtained in this way for the first triad of (15)N(16)O(2) interacting states {(020), (100), (001)}. Finally, a comprehensive list of line positions and line intensities of the {nu(1), 2nu(2), nu(3)} interacting bands of (15)N(16)O(2) was generated, using for the line intensities the transition moment operators which were obtained previously for the main isotopic species. Copyright 2000 Academic Press.  相似文献   

13.
High-resolution infrared spectra of the nu(1) and nu(2) bands of DCCCl were observed using Bruker IFS 120HR Fourier transform spectrometers at resolutions of 0.0044 and 0.0035 cm(-1), respectively. For the DCC(35)Cl isotopomer, the nu(1) as well as the nu(2) band was found to be heavily perturbed. Detailed analyses revealed that the nu(1) state is in resonance with the l=0 substate of the nu(3)+4nu(4) state and that the nu(2) state is in resonance with the l=0 substate of the nu(3)+4nu(5) state. The rotational constants played a key role in identifying the perturbing states. In contrast, for the DCC(37)Cl isotopomer, the rotational structures of the nu(1) and nu(2) states are almost regular but slightly perturbed by interactions with the nu(3)+4nu(4) and nu(3)+4nu(5) states, respectively. The constants of resonances as well as the molecular constants for the nu(1), nu(2), nu(3)+4nu(4) and nu(3)+4nu(5) states were determined. Copyright 2001 Academic Press.  相似文献   

14.
High-resolution, infrared absorption spectra of the nu6 (asymmetric C-H stretch) and 2nu2 (H-C-H symmetric bend overtone) bands of jet-cooled CH2F2 are reported with a sub-Doppler resolution of approximately 0.002 cm-1. More than 600 transitions were observed in the range of 3002-3036 cm-1, of which 268 were assigned the nu6 fundamental and 184 were assigned to the 2nu2 overtone. A fit of the nu6 band to the A-reduced Watson Hamiltonian yielded eight effective constants including nu0 = 3014.0503(1), A' = 1.62868(4), B' = 0.354165(5), and C' = 0.308852(3) cm-1. Similarly, the weaker 2nu2 band was fit to seven parameters including nu0 = 3026.2297(2), and A' = 1.63396(6), B' = 0.35367(1), and C' = 0.31183(1) cm-1. Numbers in parentheses are two standard deviations in units of the last digit. Anomalous values of the A rotational constant and the DeltaK centrifugal distortion constant are attributed to an a-axis Coriolis interaction between the 2nu2 and nu6 bands. The relative intensity of the 2nu2 band is used to estimate the stretch-bend anharmonic interaction with nu1. Copyright 1999 Academic Press.  相似文献   

15.
The 3nu(1) and 3nu(1) + nu(3) bands of propyne have been recorded at Doppler-limited resolution by Fourier transform spectroscopy and intracavity laser absorption spectroscopy, respectively. The two bands show a mostly unperturbed J rotational structure for each individual K subband. However, as a rule the K structure ordering is perturbed in overtone transitions of propyne and different effective parameters associated with each K subband have been determined. From the vibrational energy levels, a value of -6.6 cm(-1) has been obtained for the x(13) cross anharmonicity in perfect agreement with the origins of the nu(1) + nu(3) and 2nu(1) + nu(3) combination bands estimated from the FTIR spectrum. Hot bands from the v(9) = 1 and v(10) = 1 levels associated with the 3nu(1) + nu(3) combination band have been partly rotationally analyzed and the retrieved values of x(39) and x(3,10) are in good agreement with literature values. Finally, the 4nu(1) + nu(9) - nu(9) band centered at 12 636.6 cm(-1) has been recorded by ICLAS. The red shift of this hot band relative to 4nu(1) and the DeltaB(v) value are discussed in relation to the anharmonic interaction between the 4nu(1) and 3nu(1) + nu(3) + nu(5) levels. Copyright 2000 Academic Press.  相似文献   

16.
High-resolution FTIR spectra of 1,1,1-trifluoroethane (HFC-143a) have been recorded in the region from 1370 to 1470 cm(-1) with an unapodized resolution of 0.0016 cm(-1) at room temperature and of 0.004 cm(-1) at 183 and 100 K. The two main infrared active bands of A(1) symmetry have been shown to be nu(2) at 1407.5 cm(-1) and nu(4) + nu(5) at 1440.5 cm(-1). With the aid of Raman spectra, the two infrared inactive bands of E symmetry in this spectra region have been shown to be nu(8) at 1457.5 cm(-1) and nu(6) + nu(9) at 1446.2 cm(-1). The nu(2) band was analyzed as an isolated band, whereas the nu(4) + nu(5) band was analyzed as part of the triad nu(4) + nu(5), nu(6) + nu(9), and nu(8). Copyright 2000 Academic Press.  相似文献   

17.
Using 0.002 cm(-1) resolution Fourier transform absorption spectra of an (17)O-enriched ozone sample, an extensive analysis of the nu(3) band together with a partial identification of the nu(1) band of the (17)O(16)O(17)O isotopomer of ozone has been performed for the first time. As for other C(2v)-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3-16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers nu(0)(nu(3)) = 1030.0946 cm(-1) and nu(0)(nu(1)) = 1086.7490 cm(-1) were obtained for the nu(3) and nu(1) bands, respectively. Copyright 2000 Academic Press.  相似文献   

18.
The nu(1) band of ClBO has been recorded using infrared diode laser spectroscopy. The molecule was produced by reacting oxygen atoms, produced in a microwave discharge containing an O(2)/He mixture, with BCl(3). Thirty-three lines of the (35)Cl(11)B(16)O isotopomer and 32 lines due to the (37)Cl(11)B(16)O isotopomer have been assigned. By fixing the ground state constants to those previously obtained by microwave spectroscopy, a least-squares fit (rms = 0.0008) gave the following upper state constants; (35)Cl(11)B(16)O: nu(0) = 1972.18024(21) cm(-1), B(1) = 0.1725055(12) cm(-1); (37)Cl(11)B(16)O: nu(0) = 1971.82846(24) cm(-1), B(1) = 0.1688402(13) cm(-1). The rotational constants of all the fundamental bands of ClBO have been used to calculate an r(e) structure yielding r(e(B-Cl)) = 167.668(26) pm and r(e(B-O)) = 121.308(26) pm. Copyright 2000 Academic Press.  相似文献   

19.
Results of a high-resolution infrared study of the spectroscopy of monodeuterated methyl fluoride, CH(2)DF, are reported for the first time. Spectra ranging from 500 to 3300 cm(-1) have been obtained and cover all the fundamental bands at resolutions down to 0.005 cm(-1). The two lowest energy fundamentals, the nu(5) and nu(6) bands, have been analyzed in detail. Since the molecule has C(s) symmetry, in principle both these bands are AB hybrids, since they belong to the irreducible representation A'. However, it was found that both are almost pure A-type bands. A total of 597 A-type lines of the nu(5) band and 619 A-type lines of the nu(6) band have been assigned. Vibrational and rotational spectroscopic constants have been determined by least-squares fitting to the data. An improved band center for nu(7) is also reported. Copyright 2001 Academic Press.  相似文献   

20.
Analysis of the high-resolution Fourier transform spectra of the D(2)O first decade was carried out in the framework of the Hamiltonian model which took into account resonance interactions between the seven states, (300), (201), (102), (003), (220), (121), and (022). Assigned from the experimentally recorded spectrum transitions belonged to the four bands, 2nu(1) + nu(3), 3nu(3), nu(1) + 2nu(2) + nu(3), and 3nu(1), gave the possibility both of obtaining rotational, centrifugal distortion, and resonance interaction parameters of "appeared" states, (201), (003), (121), and (300), and of estimating from the fit band centers, rotational, and resonance interaction parameters of the three "dark" states, (220), (022), and (102). Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号