首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution.FigureThe advantages and disadvantages of ICP-OES and SEM-EDX techniques ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users.  相似文献   

2.
The removal of metal ions from aqueous solutions by biosorption plays an important role in water pollution control. In this study, dried leaves and branches of poplar trees were studied for removing some toxic elements (cadmium, lead, and uranium) from aqueous solutions. The equilibrium experiments were systematically carried out in a batch process, covering various process parameters that include agitation time, adsorbent size and dosage, initial cadmium, lead and uranium concentration, and pH of the aqueous solution. Adsorption behavior was found to follow Freundlich and Langmuir isotherms. The results have shown that both dried leaves and branches can be effectively used for removing uranium, while only branches were found to remove lead and cadmium completely from the aqueous solution. The maximum biosorption capacity of leaves for uranium was found to be 2.3 mg g−1 and 1.7 mg g−1 and 2.1 mg g−1 for lead and cadmium on branches, respectively. In addition, the studied biomass materials were used in removing lead and cadmium from contaminated water and the method was found to be effective.  相似文献   

3.
A white rot fungus species Lentinus sajor-caju biomass was entrapped into alginate gel via a liquid curing method in the presence of Ca(II) ions. The biosorption of cadmium(II) by the entrapped live and dead fungal biomass has been studied in a batch system. The heat-treatment process enhanced the biosorption capacity of the immobilized fungal biomass. The effect of initial cadmium concentration, pH and temperature on cadmium removal has been investigated. The maximum experimental biosorption capacities for entrapped live and dead fungal mycelia of L. sajur-caju were found to be 104.8±2.7 mg Cd(II) g−1 and 123.5±4.3 mg Cd(II) g−1, respectively. The kinetics of cadmium biosorption was fast, approximately 85% of biosorption taking place within 30 min. The biosorption equilibrium was well described by Langmuir and Freundlich adsorption isotherms. The change in the biosorption capacity with time is found to fit pseudo-second-order equations. Cadmium binding properties of entrapped fungal preparations have been determined applying the Ruzic equations. Since the biosorption capacities are relatively high for both entrapped live and dead forms, they could be considered as suitable biosorbents for the removal of cadmium in wastewater treatment systems. The biosorbents were reused in three consecutive adsorption/desorption cycles without significant loss in the biosorption capacity.  相似文献   

4.
重金属的生物吸附机理及吸附平衡模式研究*   总被引:49,自引:0,他引:49  
各种生物吸附剂包括海洋微生物、发酵工业的菌丝体废渣及活性污泥的提取物等对金属离子的吸附特性已被广泛研究,本文就生物体对金属离子的吸附机理及吸附平衡模式研究进行了综述,阐明了今后的研究方向。  相似文献   

5.
In order to elucidate the potential mechanisms involved in the biosorption of metal ions, atomic force microscopy (AFM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the interaction between Pb2+ and Bacillus cereus. AFM imaging of the biomass surfaces exposed to different concentrations of lead ions solution showed a major morphological change occurred after Pb2+ biosorption. The FT-IR spectra indicated the binding characteristics of the lead ions involved the carboxyl, hydroxyl and amino groups in the biomass. Equilibrium biosorption experiments of Pb2+ were carried out to investigate the effects of pH values and the initial metal concentrations. The experimental isotherm data were then modeled using Langmuir, Freundlich, and Redlich-Peterson isotherm equations. As a result, the Redlich-Peterson model yielded the best fit of experimental data. Kinetics experiments showed the biosorption was a rapid process and the pseudo-second-order model was successfully applied to predict the rate constant of biosorption.  相似文献   

6.
The biosorption properties of cadmium(Ⅱ) by pre-treated biomass of Phanerochaete chrysosporium in the form of pellet were investigated. It was found that formaldehyde cross-linking and subsequent alkaline treatment could significantly improve the adsorption capacity of the biomass compared to other sorts of treatments, such as calcium chloride treatment, HCl treatment and,acetone treatment. Biosorption capacity of cadmium was examined as a function of physical and chemical factors including the pH of the metal solution pellet size, temperature and biomass concentration. The cadmium removal efficiency was strongly affected by pH. The maximal adsorption occurred around pH4.5. The pellet size also had a marked influence on the cadmium removal efficiency and the optimum size was the diameter range of 1.5-2.0 mm. The effect of biosorption temperature on cadmium uptake was inconspicuous between 25℃ and 35℃, but there was a notable decrease in cadmium uptake when the temperature reached 40℃. The cadmium removal efficiency increased as the biomass concentration when the initial cadmium ion concentration was 10 mg/L. When the biomass concentration was 2 g/L,the removal efficiency was 99.56%. However, the augment of the. removal efficiency was not obvious when the biomass concentration was more than 2 g/L. On the optimum conditions mentioned above,cadmium concentration could be reduced from 10 ppm down to 0.04 ppm that was below the Chinese National Waste Water Integrated Discharge Standard. In the biosotption process, most of the metal uptake happened during a short period immediately after the adsorption process started. It was observed that the biomass pellets had already adsorbed 83.36% of the total amount of cadmium finally adsorbed within the initial 10 minutes. The cadmium uptake rate decreased gradually afterwards. Sorption equilibrium could almost be established in 12 hours. This indicated that biosorption might consist of two processes:a fast surface binding process opcurring first and a slow membrane diffusion process taking place subsequently.  相似文献   

7.
The biosorption characteristics of cations and anions from aqueous solution using polyethylenimine (PEI) modified aerobic granules were investigated. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis exhibit the presence of PEI on the granule surface. Compared with the raw granule, the modified aerobic granules with PEI showed a significant increase in sorption capacity for both metal ions. The monolayer biosorption capacity of granules for Cu(II) and Cr(VI) ions was found to be 71.239 and 348.125mg/g. The optimum solution pH for adsorption of Cu(II) and Cr(VI) from aqueous solutions was found to be 6 and 5.2, respectively. The biosorption data fitted better with the Redlich-Peterson isotherm model. FTIR showed chemical interactions occurred between the metal ions and the amide groups of PEI on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption.  相似文献   

8.
The capacities of Pleurotus ostreatus mushroom and spent substrate were evaluated for the biosorption of cadmium (II) from aqueous solution in order to select the most efficient material for bioremediation. The optimum sorption conditions were optimized, including the pH of the aqueous solution, contact time, biomass dosage, initial metal concentration, and temperature. The sorption of cadmium on both biosorbents was also evaluated by several kinetic, equilibrium, and thermodynamic models. The possible heavy metal biosorption mechanisms were evaluated through point of zero charge (pHpzc), Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX). Based on the results of column studies, the effectiveness of the P. ostreatus spent substrate was confirmed as a biosorbent for Cd(II) removal from aqueous solutions.  相似文献   

9.
The present work proposes the use of Agave sisalana (sisal fiber) as an natural adsorbent for ions Pb(II) and Cd(II) biosorption from natural waters. The flame atomic absorption spectrometry was used for quantitative determination and study of the ions Pb(II) and Cd(II) adsorption on the solid phase. The Fourier transform infrared spectroscopy (FT IR) was used to investigate the sisal structure and the specific BET surface area was analyzed. The biosorption potential of sisal as biosorbent for the removal of the ions Pb(II) and Cd(II) from aqueous solution was investigate considering the followings parameters: pH, biomass amount and contact time. Langmuir and Freundlich isotherms were used to evaluate adsorption behavior of the ions on this solid phase. The results showed that sisal has a surface area to adsorption of 0.0233 m2 g− 1, and the OH and CO functional groups are the main involved in the biosorption. The best interpretation for the experimental data was given by Freundlich isotherm that proposes a monolayer sorption with a heterogeneous energetic distribution of active sites, accompanied by interactions between sorbed molecules. The maximum monolayer biosorption capacity was found to be 1.85 mg g− 1 for Cd (II) and 1.34 mg g− 1 for Pb (II) at pH 7 and 296 K. This phase solid can be used for biosorption of cadmium and lead in polluted natural waters.  相似文献   

10.
Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the assessment of the capability of Brevibacterium sp. cells to remove bivalent ions, when present alone or in pairs, from aqueous solutions, using immobilized polyacrylamide cells of the microorganism in a flow-through system. The biosorption capacity of Brevibacterium cells was studied for lead, cadmium and copper. The metal cell binding capacity followed the order Cu > Pb > Cd, based on estimated qmax. These values, expressed as mmol metal/g dry weight cells, were 0.54 for Cu, 0.36 for Pb and 0.14 for Cd. Polyacrylamide-gel immobilized cells were effective in Pb, Cu and Cd removal. Lead removal was not affected by the presence of Cd and Cu; lead instead inhibited Cd and Cu removal. The desorption of the metal, by fluxing a chelating solution, restored the metal binding capacity of the cells, thus affording the multiple use of the same biomass in the remediation treatment. Received: 31 July 1997 / Revised: 22 December 1997 / Accepted: 30 December 1997  相似文献   

11.
Heavy metal biosorption by bacterial cells   总被引:9,自引:0,他引:9  
Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the assessment of the capability of Brevibacterium sp. cells to remove bivalent ions, when present alone or in pairs, from aqueous solutions, using immobilized polyacrylamide cells of the microorganism in a flow-through system. The biosorption capacity of Brevibacterium cells was studied for lead, cadmium and copper. The metal cell binding capacity followed the order Cu > Pb > Cd, based on estimated qmax. These values, expressed as mmol metal/g dry weight cells, were 0.54 for Cu, 0.36 for Pb and 0.14 for Cd. Polyacrylamide-gel immobilized cells were effective in Pb, Cu and Cd removal. Lead removal was not affected by the presence of Cd and Cu; lead instead inhibited Cd and Cu removal. The desorption of the metal, by fluxing a chelating solution, restored the metal binding capacity of the cells, thus affording the multiple use of the same biomass in the remediation treatment. Received: 31 July 1997 / Revised: 22 December 1997 / Accepted: 30 December 1997  相似文献   

12.
A new biosorbent loquat (Eriobotrya japonica) leaves waste for removing cadmium (II) ions from aqueous solutions has been investigated. The extent of biosorption of Cd(II) ions was found to be dependent on solution pH, initial cadmium ion concentrations, biosorbent dose, contact time, and temperature. The experimental equilibrium biosorption data were analyzed by four widely used two-parameters Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm equations. Langmuir and Temkin isotherm models provided a better fit with the experimental data than Freundlich and Dubinin–Radushkevich isotherm models by high correlation coefficients R2. The thermodynamic analysis indicated that the biosorption behavior of cadmium ions onto loquat leaves (LL) biosorbent was an endothermic process, resulting in higher biosorption capacities at higher temperatures. The negative sign values of ΔG0 and positive values of ΔH0 revealed that the biosorption process was spontaneous and endothermic. Kinetic studies showed that pseudo-second order described the biosorption experimental data better than the pseudo-first order kinetic model. The (LL) were successfully used for the biosorption of cadmium ions from contaminated water sources.  相似文献   

13.
After an overview of environmental pollution and the environmental threat posed by metals, this paper focuses on a literature survey of the different analytical methodologies and techniques used to investigate the functional groups involved in metal sorption onto biomass derived from agricultural waste. The recent literature has mainly focused on identifying the binding groups on the biomass surface through the use of different analytical techniques, from the traditional potentiometry to the most innovative and sophisticated solid surface analysis. In most of the biosorption studies, carboxylic group is the main origin for metal uptake, followed by hydroxyl group, aromatic ring and amine. The extent of the use of spectroscopic methods compared to traditional chemical analysis is being questioned. We stress that the study of biosorption mechanisms requires a multidisciplinary approach, and the efforts of analytical chemists and solution equilibrium experts really do contribute to the knowledge and to the optimization of these processes. This is the context in which we present a speciation study of the binding of various toxic metal ions by some coordinating groups on the biomass surface, which allows the classification of sorption mechanisms as a function of the pH dependence of the binding phenomena.  相似文献   

14.
贵金属离子非酶法生物还原机理初探   总被引:5,自引:0,他引:5  
在微生物湿法冶金回收贵金属的研究工作中,掌握金属非酶法生物还原的作用过程及本质是优化浸出工艺条件,设计高效,经济的生物加收技术的关键,因此有关细菌固定金属的作用机制的研究一直为人们所关注,冻干的海藻(Chlorella vulgaris)和四氯金(Ⅲ)酸盐[AuCl4]-相互作用,Au3+快速被还原为Au ,继而缓慢地被还原成Au[1],厌氧的脱硫弧菌属(Desulfovibrio desulfuricans)的休止细胞能将溶液中的钯离子还原为金属钯,用丙酮酸钠,甲酸钠或氢气作为电子供体[2],我们试图从失活细菌与金属离子的界面出发,利用谱学技术,考察细菌与金属离子之间的相互作用本质,为开发利用生物体作为吸附剂进行废水处理,回收贵重或有害金属以及制备高分散度负载型金属催化剂[3]提供理论依据。  相似文献   

15.
In this study, the effect of the increase in the initial concentration of Na(I) ions in the solution during biosorption of Cr(III) ions by two edible algae: marine macroalga — Enteromorpha prolifera and microalga — Spirulina sp. was investigated. During biosorption, essential elements are exchanged with alkali and alkaline earth metal ions (e.g. Na(I) ions), which are naturally bound with the biomass. The goal of this study was to investigate the effect of the increase in concentration of Na(I) ions on biosorption performance. The equilibrium of the process is described by Langmuir equation. It was found that with the increase in the initial concentration of NaCl (from 132 to 7331 mg L?1), there was a lower biosorption capacity of Enteromorpha prolifera (from 85.8 to 51.0 mg g?1) and Spirulina sp. (74.2 to 20.7 mg g?1) towards Cr(III) ions. It was also possible to determine the number of times the solution used in the biosorption process can be recycled and yet mantain high biosorption capacity. The determined numbers were: 16 for Enteromorpha prolifera and 19 for Spirulina sp.   相似文献   

16.
The marine algae Sargassum sp., Padina sp., Ulva sp., and Gracillaria sp., harvested locally, were investigated for their biosorption performance in the removal of lead, copper, cadmium, zinc, and nickel from dilute aqueous solutions. It was found that the biosorption capacities were significantly affected by solution pH, with higher pH favoring higher metal-ion removal. Kinetic and isotherm experiments were carried out at the optimal pH: at pH 5.0 for lead and copper, and at pH 5.5 for cadmium, zinc, and nickel. The metal removal rates were rapid, with 90% of the total adsorption taking place within 60 min. Sargassum sp. and Padina sp. showed the highest potential for the sorption of the metal ions, with the maximum uptake capacities ranging from 0.61 to 1.16 mmol/g for Sargassum sp. and 0.63 to 1.25 mmol/g for Padina sp. The general affinity sequence for Padina sp. was Pb>Cu>Cd>Zn>Ni, while that for Sargassum sp. was Pb>Zn>Cd>Cu>Ni. XPS and FTIR analysis of Sargassum sp. and Padina sp. revealed the chelating character of the ion coordination to carboxyl groups. It was confirmed that carboxyl, ether, alcoholic, and amino groups are responsible for the binding of the metal ions.  相似文献   

17.
This study investigated the feasibility of Fusarium solani biomass as a biosorbent for Cu(II) and Pb(II) removal from aqueous solutions. Batch sorption experiments were carried out for Cu(II) and Pb(II) to quantify the sorption kinetics, pH, biosorbent dose and pretreatment of F. solani biomass. Biomass metal uptake clearly competed with protons present in the aqueous medium, making pH an important variable in the process. The maximum biosorption by F. solani biomass was obtained with solutions having pH 5 for both metal ions. An enhanced Cu(II) removal (96.53%) was observed for aluminum hydroxide pretreated biomass. Maximum Pb(II) removal (95.48%) was observed with native biomass. Time dependence experiments for the metal ions uptake showed that adsorption equilibrium reached almost 240 min after metal addition. The kinetic studies showed that the biosorption process followed the pseudo second‐order rate model for Cu(II) and Pb(II). The equilibrium data fitted well to the Langmiur isotherm model.  相似文献   

18.
Among a variety of microbial materials employed for biosorption, algae have added advantages of non-toxic and autotrophic nature. In this study, biosorption of Hg(II) was studied with red algal biomass of Porphyridium cruentum. The parameters affecting biosorption such as dosage of biosorbent, pH, contact time, initial metal concentration, temperature and effect of foreign metal cations in binary system were evaluated. Kinetic data were described with the help of pseudo-first-order and pseudo-second-order kinetic models. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models were applied to adsorption equilibrium data. According to the results, the maximum removal capacity (qmax) was 2.62?mg/g observed at pH 7 with 0.25?g/L of biosorbent dosage for Hg(II) solution containing 10?mg/L of metal ions. The Langmuir isotherm model fits best to the adsorption data while the kinetic data followed the pseudo-second-order model. Thermodynamics studies showed that the biosorption process of Hg(II) on P. cruentum was exothermic in nature.  相似文献   

19.
Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. Presence of heavy metals in the aquatic system is posing serious problems. Zinc has been used in many industries and removal of Zn ions from waste water is significant. Biosorption is one of the economic methods used for removal of heavy metals. In the present study, the biomass obtained from the dried Chlorella pyrenoidosa was used for evaluating the biosorption characteristics of Zn ions in aqueous solutions. Batch adsorption experiments were performed with this material and it was found that the amount of metal ions adsorbed increased with the increase in the initial metal ion concentration. In this study effect of agitation time, initial metal ion concentration, temperature, pH and biomass dosage were studied. Maximum metal uptake (q max) observed at pH 5 was 101.11 mg/g. The biosorption followed both Langmuir and Freundlich isotherm model. The adsorption equilibrium was reached in about 1 h. The kinetic of biosorption followed the second-border rate. The biomass could be regenerated using 0.1 M HNO3. A positive value of ΔH° indicated the endothermic nature of the process. A negative value of the free energy (ΔG°) indicated the spontaneous nature of the adsorption process. A positive value of ΔS° showed increased randomness at solid-liquid interface during the adsorption of heavy metals, it also suggests some structural changes in the adsorbate and the adsorbent. FTIR Spectrums of Chlorella pyrenoidosa revealed the presence of hydroxyl, amino, carboxylic and carbonyl groups. The scanning electron micrograph clearly revealed the surface texture and morphology of the biosorbent.  相似文献   

20.
In this study, biosorption of cobalt(II), chromium(III), cadmium(II), and lead(II) ions from aqueous solution was studied using the algae nonliving biomass (Neochloris pseudoalveolaris, Np) as natural and biological sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacity of metal ions was investigated. The maximum adsorption capacities for Co(II), Cr(II), Cd(II), and Pb(II) were found to be 20.1, 9.73, 51.4 and 96.2 mg/g at the optimum conditions, respectively. The experiments showed that when pH increased, an increase in the adsorption capacity of the biomass was observed too. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of metal ions adsorption and the value of R L for Pb(II), Cb,(II), Co(II), and Cr(III) was found to be 0.376, 0271, 0872, and 096, respectively. The thermodynamic parameters related to the adsorption process such as E a , ΔG 0, ΔH 0, and ΔS 0 were calculated. ΔH 0 values (positive) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to experimental equilibrium data. The algae biomass was effectively used as a sorbent for the removal of metal ions from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号