首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A process for concentration and separation of platinum group metals (PGM) by a combination of ion exchange and liquid-liquid extraction is presented. First the PGM metals are dissolved by HC1/C11 and then passed through an isothiouronium anion exchange resin, where specific absorption occurs. The thiourea eluate from the resin is converted to the chloride complexes. Further hydrolysis (conditioning) yields an aqueous feed to a liquid-liquid extraction step, with Alamine-336. Platinum and palladium are very well extracted, while most of the other PGM are rejected in the aqueous phase. The liquid-liquid extraction can be used by itself, if the level of the base metals does not exceed the concentration of the PGM ions.

Platinum and palladium are now separated from each other by the selective stripping of palladium with thiourea, and platinum with thiocyanate.

The paper discusses the extraction chemistry of all the steps, and provides also experimental pilot-plant results.  相似文献   

2.
Differences in the ion flotation properties of palladium(II) and platinum(IV) chloro complexes in aqueous solutions are used to achieve separations of these metals. The anionic chloro complex PtCl2-6 is floated selectively with cationic surfactants of the type, RNR'3Br, from solutions of PdCl2-4 and various concentrations of hydrochloric acid. The palladium(II) does not float from solutions of ? 3.0 M HCl and the platinum(IV) floated from these solutions can be recovered free of palladium. However, the separation is incomplete as much of the platinum(IV) is also unfloated from these solutions. Quantitative separations are obtained by conversion of the palladium(II) to the cationic ammine, Pd(NH3)42+ with aqueous ammonia prior to flotation. The anionic chloro complex of platinum(IV) is unaffected by the presence of ammonia and is floated quantitatively with the surfactant n-hexadecyltri-n-propylammonium bromide from 0.01 M ammonia solutions.  相似文献   

3.
A new method for the separation of trace amounts of palladium from hydrochloric acid and potassium thiocyanate media has been established based on the formation of an ion-pair complex of palladium thiocyanate anion Pd(SCN)4 2– and the cationic potassium complex of dicyclohexyl-18-crown-6 (DC18C6) in chloroform. The effect of various factors (solvent, crown ether, potassium thiocyanate, hydrochloric acid, reagent concentration, shaking time, phase volume ratio, composition of the extracted species, foreign ions, etc.) on the extraction and back-extraction of palladium has been investigated. The method can be combined with subsequent FAAS determination of palladium. The procedure was applied to determine palladium traces in chloroplatinic acid and rhodium chloride.  相似文献   

4.
A simple separation/pre-concentration method was developed for extraction of Pd(II) in various environmental samples, based on its adsorption of 4–phenyl–5–{[(4–phenyl–5–pyridin–4–yl–4H–1,2,4–triazole–3–yl)thio]methyl}–4H–1,2,4–triazole–3–thyol (PPTTMET) complex on Amberlite XAD–2010 resin in a mini column. The ligand has high affinity for Pd(II) among many other metals that are taken into consideration. The flame atomic absorption spectrometry is employed to determine the concentration of Pd(II). The optimum working conditions which were determined are as follows: 0.05?mol?L?1 HNO3 as working medium, 1.0?mol?L?1 HCI in acetone as elution solvent, 0.75?mg of PPTTMET amount and 750?mL of sample volume. The system was independent from the flow rates between 3.1 and 23.1?mL?min?1. The Pd(II) adsorption capacity of Amberlite XAD–2010 resin was found to be 12.8?mg?g?1 and the enrichment factor was calculated as 375. The method was successfully applied for the determination of Pd(II) in motorway dust samples, anodic sludge, gold ore, industrial electronic waste materials and various water samples.  相似文献   

5.
张明明  江曼曼  梁长海 《催化学报》2013,34(12):2161-2166
以碱性阴离子交换树脂Amberlite IRA-900为载体,Pd(C3H5)(C5H5)为金属有机前体,采用金属有机气相沉积法在室温下制备了Pd@IRA-900多相催化材料.紫外-可见光谱分析证明前体和树脂骨架之间的化学作用以及树脂本身的孔道结构使得Pd纳米粒子均匀分散在载体上.透射电镜结果显示钯纳米粒子的平均尺寸为2.6 nm.在较温和的条件下Pd@IRA-900对多种卤代芳烃和苯硼酸的Suzuki偶联都具有良好的催化活性,并且催化剂重复使用5次之后依然具有很好的活性.此外,对树脂载体进行碱性交换处理后可得到一种双功能催化材料Pd@IRA-900(OH),该催化剂在不加入碱的条件下也可以催化碘苯和苯硼酸的Suzuki偶联反应.  相似文献   

6.
A method was developed for the on-line determination of palladium in complex matrices with flame atomic absorption spectrometry (FAAS) using Amberlite XAD-16 resin functionalized with 2-[2-(5-thiol-1,3,4-thiadiazolyl)]-azonaphthol (TTAN) reagent. Optimum experimental conditions such as pH of sample, type of eluent, amount of resin, volumes of sample and eluent solution, flow rates of sample and eluent, and effect of interfering ions were established. A 0.1?mol?L?1 thiourea solution in 0.5?mol?L?1 HCl was used as the eluent and subsequently transportation the analyte ions into the nebulizer–burner system for atomization. The synthesized chelating resin material showed excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates without significant losses of retention efficiency. The detection limit of the method was 1.5?µg?L?1 while the relative standard deviation (RSD%) was 2.4% at 0.1?mg?L?1 Pd(II) level. The developed method was successfully applied to the determination of palladium in the catalytic converter and water samples.  相似文献   

7.
《Analytical letters》2012,45(13):2805-2820
ABSTRACT

The preconcentration and separation of platinum and palladium from weakly acidic solution (pH=4) were done on microcolumn packed with Cellex-T resin. Selective platinum elution from the column was performed with 0.01 mol/l glycine solution at pH=12, while for palladium elution 1.2 mol/l thiourea (pH=0.5) or 4.0 mol/l potassium thiocyanate (pH=1) may be used. As the detection technique was used either FAAS or GFAAS, depending on the concentration of studied metals in the eluate.  相似文献   

8.
Palladium is precipitated with ammonia and iodide; platinum remains in solution and is completely extracted with dithizone in carbon tetrachloride. The precipitated palladium compound is shown to be Pd(NH3)2I2 by thermogravimetry and by determinations of ammonia and iodide. To separate small amounts of palladium from platinum in the dithizone extract, the resistance of platinum dithizonate to oxidizig agents is utilized; platinum dithizonate is converted to an oxidized form which is easily reduced to the initial form. The separation and spectrophotometric procedure enable about 1 × 10?3% platinum to be quantified in palladium(II) chloride with good precision and accuracy.  相似文献   

9.
Sorption of macroamounts of the technetium thiourea complex cation by a cation exchange resin was studied in HNO3 and HClO4 solutions as a function of the concentration and reaction time for pertechnetate with thiourea. The distribution ratio reaches the value of 103 and may be even higher (>104) when sorption proceeds from a solution of the solid complex in dilute perchloric acid. The complex cation is extracted from 0.25–1M HNO3 with solutions of the bis(1,2-dicarbollyl)cobalt(III) anion in nitrobenzene—chloroform (1:1), log D=2.75−2.95 being obtained. The preconcentration and separation of technetium on cation exchangers from dilute mineral acids would seem to be one field of application.  相似文献   

10.
The equilibrium and kinetics of back-extraction (stripping) of palladium originally extracted as PdCl2?4 from the chloroform extracts obtained with 1-(2-pyridylazo)-2-naphthol (PAN), 7-(4-ethyl-1-methyloctyl)quinolin-8-ol (Kelex 100) or dioctyl sulfide (R2S) were investigated. Replacement of chloride in extracted species by thiocyanate occurs prior to back-extraction. The back-extraction equilibria have been described by Pd(SCN)2(R2S)2(o) + 2SCN?KBX1 Pd(SCN)2?4 + 2R2S(o), with KBX1=10?(1.16±0.05), and Pd(SCN)PAN(o) + 3SCN? + H+KBX2 Pd(SCN)2?4 + PAN(o), with KBX2=104.89±0.06. The rate of stripping from PdPAN and PdKelex 100 displayed an inverse first-order dependence on the solution pH, a second-order dependence on the thiocyanate concentration and was zero order in both the chloride and the organic phase chelate concentration. More complicated kinetics were observed for palladium stripping in the dioctyl sulfide system. In all systems, the enhancement in stripping rate parallels the size of the “trans effect”.  相似文献   

11.
The functional group capacity and the percentage of functional group conversion of crosslinked polystyrene resin bearing N-methyl-2-thioimidazole (MTIR) synthesized under optimum conditions are as high as 4.08 mmol/g resin and 96.0%, respectively. The apparent activation energies of sorption of MTIR for Au(III) and Pt(IV) are 13.1 and 13.4 kJ/mol, respectively. The sorption behavior of MTIR for Au(III), Pt(IV), and Pd(II) obeys the Freundlich and Langmuir isotherms. The sorption capacities of MTIR for Au(III), Pt(IV), and Pd(II) are as high as 4.33, 2.12, and 2.33 mmol/g resin, respectively. Au(III), Pt(IV), and Pd(II) adsorbed on MTIR can be eluted quantitatively by the eluant. The resin can be regenerated easily and reused without an obvious decrease in the sorption capacity for Au(III) and Pd(II). The resin has high sorption selectivity for noble metal ions. Au(III) can be separated quantitatively in the presence of high concentrations of Cu2+, Fe3+, Ni2+, and Mn2+. The recovery of platinum from the spent industrial catalysts is 98.6% by MTIR. The preconcentration and separation of palladium and platinum from the anode deposits of electrolysis of crude copper have been investigated. The resin may have potential industrial uses.  相似文献   

12.
A novel unsymmetrical multidentate ligand namely; N,N'-dimetyl-N,N'-didecyldithiodiglycolamide (DMD3TDGA) was synthesized and used as agent for the selective extraction of palladium(II) from hydrochloric acid solutions. A systematic investigation was carried out on the extraction of Pd(II) using DMD3TDGA. The quantitative extraction of Pd(II) with DMD3TDGA in n-dodecane is observed at ~4 M HCl. The main extracted species of Pd(II) is PdCl2. DMD3TDGA and IR spectra of the extracted species were investigated. The extraction of palladium(II) from various concentrations of hydrochloric acid solutions in the presence of metal ions, such as Pt(IV), Rh(III), Cr(II), Ni(II), Fe(III), Nd(III), Zr(II), and Mn(II) was carried. DMD3TDGA showed very high selectivity and extractability for Pd(II). Quantitative back extraction of Pd(II) was obtained in single contact using thiourea solution. The results obtained indicated that, excellent separation of Pd(II) from the investigated metal ions can be achieved. Five successive cycles of extraction/back-extraction, indicating excellent stability and re-utilization of this new extractant can be used for selective separation of Pd(II) from other elements in hydrochloric acid medium.  相似文献   

13.
Hybrid supramolecular capsules self‐assemble by simultaneously forming hydrogen and metal–ligand coordination bonds on mixing a C2‐symmetrical cavitand (calix[4]resorcinarene‐based cavitands with ureide and terminal 4‐pyridyl units) with platinum or palladium complexes ([Pt(OTf)2] or [Pd(OTf)2] with chelating bisphosphines) in 1:1 ratio. Hemicapsular assemblies formed in the presence of excess amounts of cavitand relative to the platinum or palladium complexes are identified as intermediates in the above self‐assembly process by 2D‐NOESY spectroscopy. External‐anion‐assisted encapsulation of a neutral guest, 4,4′‐diiodobiphenyl, inside the hybrid supramolecular capsules accompanied conformational changes in the hydrogen‐bonding moieties. The in/out exchange ratio of the encapsulated guest depends on the bite angle of the bisphosphine ligand. Addition of DMSO accelerates guest exchange by weakening the hydrogen bonds in the encapsulation complex. Therefore, variations in the structure of the metal complex and amount of polar solvent exert dual control on the dynamics of the guest exchange.  相似文献   

14.
《Analytical letters》2012,45(3):779-790
Abstract

The separation of bromocomplexes of platinum group metals by Donnan dialysis is demonstrated with both anion and cation exchange membranes. the inclusion of ethylenediamine (en) in the sample improves the separation of Pd(II) from Pt(IV) with experiments performed with an anion exchange membrane and decreases the amount of metal retained on the membrane phase. With a cation exchange membrane, the addition of a ligand such as en is required for transport. With 5.6 mM en in the sample at pH 10, 74% of Pd(II) is transported across an anion exchange membrane into 0.5 M NH4Br after 6 hours while only 8% of the Pt(IV) is dialyzed. Rhodium(III) and iridium(III) behave like Pt(IV). Using a cation exchange membrane under the same conditions except with a 1 hour dialysis results in a 30-fold preferential preconcentration of Pd(II) relative to Pt(IV), and, based on the amount retained in the membrane, a preconcentration of Ir(III) which exceeds that of Pd(ll) and Pt(IV) by factors of 40 and 20, respectively.  相似文献   

15.
Goldcarb WSC-207C GR activated carbons with platinum and palladium complexes adsorbed from aqueous solutions of K2[Pt(CN)4], K2[Pt(CN)6], and K2[Pd(CN)4] were studied by the methods of X-ray photoelectron spectroscopy and IR spectroscopy with Fourier transformation, and also by MALDI massspectrometry. Platinum and palladium cyanide complexes are not reduced onto surface of active charcoal while adsorption. A certain part of the [Pd(CN)4]2− and [Pt(CN)4]2− anions directly bound to active centers on the activated carbon is oxidized more deeply and functions as particles-anchors, forming oligomers resembling Krogmann salt. A correspondence between the structure of the complex cyanometallate ion and a mode of its binding with active carbon is found. The adsorption of complex species with a linear structure or a square planar structure is defined by a possibility of the formation of donor-acceptor and metallophilic bonds. The mode of the anion [Au(CN)2] binding with the surface of active carbon was considered.  相似文献   

16.
The Influence of Ring Size on the Structure of Metal Chelates with Tridentate Ligands. IV. Palladium(II) and Platinum(II) Complexes of Pyridyl Substituted Dialkyl Sulfides and Amines [β-(Pyridyl-2)-ethyl]-[(pyridyl-2)-methyl]-amine(2,3-py2tri) forms planar palladium(II) complexes [Pd(2,3-py2tri)X]X (X = Cl, Br) occupying trans-positions as a tridentate ligand. An analogous behaviour is observed with bis[β-(pyridyl-2)-ethyl]-sulfide(3,3-py2Stri) in the chelate compounds [MeII(3,3-py2Stri)X]X (MeII = Pd, Pt; X = Cl, Br, J, SCN). On the other hand the rigid ligand bis[(pyridyl-2)-methyl]-sulfide(2,2-py2Stri) is only bidentate in the complexes MeII(2,2-py2Stri)X2 (MeII = Pd, Pt; X = Cl, Br, J, SCN), one pyridine group does not interact with the central atom. The reasons are the angular relations within the thioether group of 2,2-py2Stri which allow a tridentate coordination in a facial conformation (octahedral and trigonal-bipyramidal nickel(II) and copper(II) complexes), but not in a meridional one (planar palladium(II) and platinum(II) complexes). In Pt(2,2-py2Stri)(SCN)(NCS) one thiocyanato ligand is linked by sulfur, the other one by nitrogen.  相似文献   

17.
Summary The halogen bridges of the dimeric, cyclometallated trimesityl-arsine and -phosphine complexes of palladium(II) and platinum(II), where M=Pd or Pt and E=P or As have been replaced with pyrazolate groups to give the corresponding and less symmetric pyrazolato-bridged complexes, where M=Pd or Pt, E=P or As, Pz=pyrazolato anion, and M=Pd, E=As, Pz=3,5-dimethylpyrazolato anion. In the case of the palladium complexes,1H. n.m.r. clearly indicates the presence of only one isomer which is most likely to have thetrans configuration while the platinum complexes are mixtures of bothcis andtrans forms.Part VI, ref. 3c  相似文献   

18.
Two radiochemical separation methods were developed for the separation of 88Y from a SrS target (3.2 g, pressed into a 19 mm disc) and Al (2.5 g, the capsule contained the target). The first method was based on solvent extraction technique using undiluted TBP/HNO3 system and the second was an extraction chromatography using a column packed with TBP-impregnated Amberlite XAD-4 resin. A simple procedure was used for the impregnation of the XAD-4 resin with TBP. For both methods concentrated nitric acid was used for extraction/adsorption and 2M HCl for back extraction/elution of 88Y. In terms of recovery of 88Y, the solvent (TBP)-impregnated resin showed better results (average 91.2% compared to 88.9% with extraction).  相似文献   

19.
The reactions of 3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecadiene, L1, and two isomers (LB and LC, differing in the orientation of methyl groups on the chiral carbon atoms) of its reduced form with PdCl2 and K2[Pd(SCN)4], produce square‐planar tetrachloro‐ and tetrathiocyano‐palladium(II) complexes of general formulae [PdL′][PdCl4] and [PdL′][Pd(SCN)4] (L′ = L1, LB and LC), respectively. By contrast, the third ane isomer, LA, upon reaction with the same reagents, PdCl2 and K2[Pd(SCN)4], formed octahedral tetrachloro‐ and tetrathiocyanato‐palladium(IV) complexes [PdLACl2]Cl2 and [PdLA(SCN)2](SCN)2, respectively. The [PdL′][PdCl4] and [PdLACl2]Cl2 complexes undergo substitution reactions with KSCN to form square‐planar and octahedral tetrathiocyanato complexes [PdL′][Pd(SCN)4] and [PdLA(SCN)2](SCN)2, respectively. All complexes have been characterized on the basis of analytical, spectroscopic, conductometric and magnetochemical data. The anti‐fungal and anti‐bacterial activities of these complexes have been studied against some phytopathogenic fungi and bacteria. The crystal structure of [PdL1][Pd(SCN)4] has been confirmed by X‐ray crystallography and shows with square‐planar PdN4 and PdS4 geometries [monoclinic, space group C2/c, a = 17.884(3) Å, b = 14.734(2) Å, c = 11.4313(18) Å, β = 104.054(5)° ]. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A procedure for separation of Au, Ag, Pt, and Pd in geological samples has been developed. After irradiation, samples were fused with Na2O2 and silver was separated by filtering through a PbCl2 filter in 4M nitric acid solution. Au, Pt and Pd were concentrated with rhodium and thiourea as rhodium sulfide and the separation process of these elements was carried out by a chromatographic method. Au, Pt and Pd were retained on a Dowex-1×8 anion column in 1M HCl. Pd was eluted from the column by using a mixture of 75% HCl acid-25% acetone. Au was eluted by using a mixture of 10% HCl-90% acetone. In the gold fraction, Pt was also determined through the photopeak of199Au radionuclide (158 keV). The method was simple and rapid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号