首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive analytical procedure based on solid phase extractive-spectrophotometry has been established for the determination of the widely used herbicide atrazine .The method is based on the Konig reaction in which atrazine reacts with pyridine reagent to form a quaternary pyridinium halide, which further forms glutaconic aldehyde in the presence of alkali. Glutaconic aldehyde is subsequently coupled with 4-aminoacetanilide in the micellar medium of anionic surfactant sodium dodecyl sulphate to give a yellow-orange dye. The produced dye was enriched on a C18 cartridge and is measured spectrophotometrically at 460 nm. The sensitivity and selectivity of the method was largely enhanced in the micellar media and SPE on the C18 cartridge and avoids the use of toxic solvents. Beer’s law was obeyed in the range 0.012–0.12 μg mL?1. Molar absorptivity and Sandell’s sensitivity were found to be 1.52 × 10L mol? 1 cm?1 and 0.0002 μg cm?2, respectively. The limit of detection and quantification were 0.001 and 0.003 μg mL?1, respectively. The proposed method was applied successfully for the determination of atrazine in environmental and biological samples with a recovery range of 96–101 %. The method was found to be free from interference of a large number of foreign species. The accuracy and reliability of the method was further established by parallel determination by the reference method, and by recovery studies.  相似文献   

2.
In this research work, a new approach is developed for the extractive determination of chromium. The principle of this approach is based on the complexation reaction between 4-(4?-chlorobenzylideneimino)-3-methyl-5-mercapto-1,2,4-triazole (CBIMMT) in dichloromethane as a complexing reagent and chromium(III) in presence of potassium iodide to form a yellow coloured complex at room temperature. The 1:2:2 [Cr(III)-CBIMMT-iodide] ternary complex was quantitatively extracted in dichloromethane from 2.5 mol L?1 of hydrochloric acid medium which showed maximum absorption intensity at λmax 411 nm and was stable for more than 72 h. The values of molar absorption coefficient and Sandell’s sensitivity of the complex were found to be 0.7019 × 104 L mol?1 cm?1 and 0.00748 µg cm?2, respectively. The system adheres to Beer’s law from 1.5 to 6.0 µg mL?1; however, Ringbom’s plot suggests optimal concentration range was 1.8–5.8 µg mL?1. The limit of detection and limit of quantification of the approach is 0.26 and 0.79 µg mL?1. This approach was successfully used for the determination of chromium from wastewater effluents from the tannery industries (Kolhapur, MS, India), alloy samples and for separation of it from synthetic mixtures. The present experimental approach is apparently much simpler than the conventional method comprising multistep processes.  相似文献   

3.
Abstract

A sensitive method for the spectrophotometric determination of osmium at the ppb level is described. The method is based on the formation of a brown-coloured complex by heating the reaction mixture containing Os(VIII), pyrocatechol and a hydroxyamidine at pH 8.5 over a boiling water bath, with subsequent extraction of the coloured species into chloroform. The molar absorptivity of the coloured species with N-hydroxy-N,N′-diphenylbenzamidine is 3.95 × 106 1 mol?1 cm?1 at λmax = 410 nm. The method is free from interferences for almost all ions tested.  相似文献   

4.
A facile,rapid and sensitive spectrophotometric method was developed for the determination of carbaryl in itsformulations,water and grain(rice and wheat)samples with newly synthesised reagent.The proposed method wasbased on the alkaline hydrolysis of carbaryl pesticide and thus resulted 1-naphthol was coupled with diazotised4,4'-methylene-bis-m-nitroaniline in basic medium(pH 9)to give red colored product having λ_(max)480 nm for dia-zonium method(DM)or 1-naphthol reacts with 4,4'-methylene-bis-m-nitroaniline in the presence of oxidising agentpotassium dichromate(K_2Cr_2O_7)to give red colored product having λ_(max)510 nm for oxidation method(OM).Theformation of colored derivatives with the coupling agent is instantaneous and stable for 48 h(DM)and 32 h(OM)respectively.Beer's law was obeyed in the concentration range of 0.2—10.0 μg·mL~(-1)for DM and 0.2—0,150μg·mL~(-1)for OM.The proposed methods are sensitive,easy to operate and permitted for the determination of car-baryl with detection limits of 0.028 μg·mL~(-1)for DM and 0.024 μg·mL~(-1)for OM respectively.The experimentalresults indicate that the procedure can eliminate the fundamental interferences caused by other pesticides andnon-target ions,which made the methods more sensitive and selective.The method was applicable to the determina-tion of carbaryl residue in water and food grain samples up to μg level.  相似文献   

5.
A spectrophotometric method to determine palladium(II) at trace levels is based on the extraction of palladium(II) as a binary complex with N-hydroxy-N,N′-diphenylbenzamidine (HDPBA) in chloroform at pH 5.0 ± 0.2. The complex shows maximum absorbance at 400 nm with molar absorptivity 6.4 × 103 L mol?1 cm?1. The sensitivity of the Pd(II)-HDPBA complex was enhanced by the addition of l-(2-pyridylazo)-2-naphthol (PAN). The green coloured complex shows maximum absorbance at 620 nm with molar absorptivity 1.58 × 104 L mol?1 cm?1. Sandell's sensitivity and the detection limit of the method are 0.0067 μg cm?2and 0.1 μg Pd(II) mL?1, respectively. Most common metal ions associated with palladium metal do not interfere. The effects of various analytical parameters on the extraction of the metal are discussed.  相似文献   

6.
《Analytical letters》2012,45(12):1999-2013
Abstract

A simple, rapid, selective, and sensitive method for the derivative spectrophotometric determination of Hg(II) and its simultaneous determination in the presence of Zn(II) using 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol in the presence of cetylpyridinium chloride, a cationic surfactant, has been developed. The molar absorption coefficient and analytical sensitivity of the 1∶1 Hg(II) complex at 558 nm (λmax) are 5.78×104 L mol?1 cm?1 and 0.67 ng mL?1, respectively. The detection limit of Hg(II) is 1.40×10?2 ng mL?1, and Beer's law is valid in the concentration range 0.05–2.40 µg mL?1. Overlapping spectral profiles of Hg(II) and Zn(II) complexes in zero‐order mode interfere in their simultaneous determination. However, 0.10–2.00 µg mL?1 of Hg(II) and 0.065–0.650 µg mL?1 of Zn(II), when present together, can be simultaneously determined at zero cross point of the derivative spectrum, without any prior separation. The relative standard deviation for six replicate measurements of solutions containing 0.134 µg mL?1 of Hg(II) and 0.620 µg mL?1 of Zn(II) is 1.72 and 1.47%, respectively. The proposed method has successfully been evaluated for trace level simultaneous determination of Hg(II) and Zn(II) in environmental samples.  相似文献   

7.
A simple sensitive extractive spectrophotometric method for determination of trichloroethylene is proposed. Trichloroethylene is treated with pyridine to form glutaconic aldehyde by heterolytic cleavage of the pyridine ring. Glutaconic aldehyde is further coupled with 4-aminoacetanilide to form an orange–red dye which is extractable in 3-methyl-1-butanol. The extracted dye shows absorption maximum at 520 nm. The system obeys Beer’s law in the range of 0.05–0.8 μg mL?1. Important analytical parameters such as time, temperature, reagent concentration, acidity etc. have been optimized for complete colour reaction. Sandell’s sensitivity and molar absorptivity for the system were found to be 0.001 μg cm?2 and 1.2 × 105 L mol?1 cm?1, respectively. The proposed method is satisfactorily applied to micro-level determination of trichloroethylene in various environmental and biological samples.  相似文献   

8.
The structure of styryl dye, 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride (I), was investigated using methods such as UV-VIS, fluorescence spectroscopy, and NMR (1H, 13C, APT, HMQC, COSY) and also by examining its electrochemical properties. A study of the acid-base properties revealed the existence of three different forms of the dye. The mechanisms of protolysis and hydrolysis are discussed. The reagent exists in a reactive single-charged form I + over a wide range of acidity (pH 4–11). The optimum analytical wavelength of the singlecharged form is 550 nm, where the molar absorptivity is 5.51 × 104 L mol?1 cm?1. The values of the optimum analytical wavelength and molar absorptivity of the protolysed and hydrolysed forms are: λ max(I-H2+) = 380 nm, ?(I-H2+) = 2.01 × 104 L mol?1 cm?1; λ max(I-OH) = 320 nm, ?(I-OH) = 1.12 × 104 L mol?1 cm?1. A theoretical study of the spectral and chemical properties of I was carried out by performing quantum chemical calculations.  相似文献   

9.
Abstract

A novel spectrophotometric method for the determination of zirconium by using a new reagent, acidic extract of Platanus orientalis tree leaves is developed. In 6 M hydrochloric acid, zirconium reacts with this reagent to form a yellow product. The formed product shows maximum absorbance at 422 nm with a molar absorptivity value of 0.59×10? l mol?1 cm?1 and the method was linear in the 0.4–8 µg mL?1 concentration range. The detection limit value was found to be 0.086 µg mL?1. The proposed method was simple, clean, low cost, selective, and sensitive. It was applied to the determination of zirconium in tap water, wastewater and well water samples with relative standard error of less than 2.5%.  相似文献   

10.
The 1,2,5,8-tetrahydroxyanthraquinone (quinalizarin) forms a colored complex with the ion In(III) in dimethylformamide-water solution. The 3:1 (R:In(III)) complex shows a λmax of 565 nm and a molar absorptivity of 4.59 × 104 liters mol?1 cm?1. A new method for the spectrophotometric determination of In(III) between 0.2 and 2.2 ppm with a relative error of 1.57% is proposed.  相似文献   

11.
A simple and rapid spectrophotometric technique has been designed for the trace copper analysis employing 1-(2-Thiazolylazo)-2-naphthol (TAN) reagent in aqueous micellar solution of cetyl trimethylammonium bromide (CTAB) as a surfactant. Copper complexed with 1-(2-Thiazolylazo)-2-naphthol to form bis[1-(2-Thiazolylazo)-2-naphthol]copper. The present spectrophotometric technique was very important since the micellar system was used in place of the toxic, high cost and time-consuming solvent extraction steps. The technique showed an enhanced detection efficiency, specificity, and molar absorptivity. It was found that the molar absorption coefficient and sensitivity of Sandel were ε 2.45 × 104 L mol?1cm?1 and 2.6 ngcm?2 at λmax 578.4 nm. A linear calibration plot in the range 0.12–5.0 μg mL?1 was obtained; a stoichiometric metal ligand ratio [M:L] of 1:2 was found for the formation of Cu-[TAN]2. The complex was formed at pH 9.5 and was stable up to 24 h. The proposed technique has been employed to study copper from different alloys, biological, environmental and pharmaceutical samples.  相似文献   

12.
A sensitive reagent system is proposed for the determination of cyanide and hydrogen cyanide in various environmental samples. The method is based on the conversion of cyanide into cyanogen bromide followed by its reaction with pyridine to form glutaconic aldehyde. The glutaconic aldehyde so formed is coupled with p‐aminoacetophenone forming yellow‐orange polymethine dye measured at 445 nm. The colour system obeys Beer's law in the range of 0.01–0.16 ppm of cyanide inaqeous phase and 0.002–0.03 ppm in extracting system. The molar absorptivity and Sandell's sensitivity were found to be 6.51 × 105 l mol?1 cm?1 and 0.0001 μg cm?2, respectively. The method has been successfully applied for the determination of cyanide in air, industrial effluent, biological samples, and in the pesticide acrylonitrile.  相似文献   

13.
The formation of complexes at pH 4.7 of the Hg(II) with five monothiosemicarbazone and two dithiosemicarbazone has been studied. The mercury(II) reacts with monothiosemicarbazones of salicylaldehyde (λmax = 363 nm, E = 1.69 × 104liters · mol?1cm?1), pi-colinadehyde (λmax = 363 nm, E = 2.38 × 104liters · mol?1cm?1), 6-methyl-picolinaldehyde (λmax = 363 nm, E = 2.28 × 104liters · mol?1cm?1), di-2-pyridylketone (λmax = 380 nm, E = 2.08 × 104liters · mol?1cm?1), and o-naphthoquinone (λmax = 540 nm, E = 1.03 × 104liters · mol?1cm?1) and with dithiosemicarbazones of 1,4-dihydroxyphthalimide (λmax = 430 nm, E = 2.56 × 104liters · mol?1cm?1) and dipyridylglyoxal (λmax = 363 nm, E = 2.37 × 104liters · mol?1cm?1). A critical comparison of the stoichiometry and apparent stability constant of complexes with mono- and dithiosemicarbazones is given.  相似文献   

14.
A miniaturized flow-injection-analysis system constructed from glass and polydimethylsiloxane was employed for the determination of ammonium in river water. The sample was filtered and delivered to the reactor chip electro-osmotically using a disposable fritted capillary, while reagents were delivered to the system by gravity. Ammonia was mixed with the hypochlorite, to form a monochloramine. Once the alkaline luminol (3-aminophthalhydrazide) was delivered to the system, it was oxidized by the unconsumed hypochlorite emitting a bright blue light (λ max?~?440?nm) that was detected using a miniaturized photomultiplier tube (PMT) located directly under the chip. The calibration model for ammonium standards was linear up to 0.1?µg?mL?1 (y?=??8.96x?+?1.02; correlation coefficient, r 2?=?0.9715) over a working range of 0.0–0.5?µg?mL?1. A detection limit of 10?±?6?µg?mL?1 was achieved with a precision value of (RSD ≤ 6.4%), for n?=?5. A direct and standard addition method were used to determine the concentration of ammonium in a river-water sample (from the Humber Estuary, UK) which was found to be 0.075?±?0.005?µg?mL?1, with a precision value of (RSD?≤?3.7%), for n?=?9. The results obtained showed good agreement with the average concentration 0.065?µg?mL?1 (provided by the local environmental agency), for the analysis of ammonia at different sample points on the estuary.  相似文献   

15.
2,2′-Dihydroxybenzophenone thiosemicarbazone forms complexes with Cu(II) (λmax = 385 nm, ? = 8.60 × 103 liter · mol?1 · cm?1); Ni(II) (λmax = 380 nm, ? = 15.4 × 103 liter · mol?1 · cm?1); Co(II) (λmax = 380 nm, ? = 12.3 × 103 liter · mol? · cm?1); and Fe(III) (λmax = 365 nm, ? = 7.9 × 103 liter · mol?1 · cm?1) and have been applied to the analysis of these metal ions in binary, ternary, and quaternary mixtures. The determination procedures are based exclusively on the different pH values of the formation complexes, hence the extraction step is not necessary.  相似文献   

16.
A selective extraction–spectrophotometric method has been developed for determination of selenium(IV) using O-methoxyphenyl thiourea (OMePT) as a chelating agent. The basis of the proposed method is the spectrophotometric determination of selenium(IV)–OMePT complex obtained after extraction of selenium(IV) from 3.5 M hydrochloric acid media using OMePT in chloroform solvent. The complex shows maximum absorbance at 350 nm against the reagent blank. The Beer’s law was obeyed over the concentration range 5–60 µg mL?1 of selenium(IV). The optimum concentration range was 20–50 µg mL?1 as evaluated from Ringbom’s plot. The molar absorptivity and Sandell’s sensitivity of the selenium(IV)–OMePT complex in chloroform were 3.312 × 102 L mol?1cm?1 and 0.2384 µg cm?2, respectively. The composition of selenium(IV)–OMePT complex was 1:2 established from slope ratio method, mole ratio method and Job’s continuous variation method. The complex was stable for more than 72 h. The interfering effect of various foreign ions was studied and suitable masking agents were used wherever necessary to enhance the selectivity of the developed method. The proposed method was successfully applied for the determination of selenium(IV) from real samples, viz. pharmaceutical formulations, shampoo, vegetable sample, synthetic mixtures and environmental samples. Repetition of the method was checked by finding the relative standard deviation (RSD) for 10 determinations which was 0.35%.  相似文献   

17.
The synthesis, characteristics and analytical reactions of di-2-pyridyl ketone thiosemicarbazone are described. This compound reacts with iron(II) (λmax=410mm, ε = 9.3 · 103 1 mol?1 cm?1), nickel(II) (λmax =395 mm ε =19.6·103 10 mol ?1 cm -1), cobalt(II) (λmax = 415 nm. ε = 1.0 · 104 mol?1 cm?1 ) and copper(I) (λmax =395mm ε = 11.3 · 103 mol?1 cm?1) A critical comparison of di-2-pyridyl ketone, picolinaldehyde and bipyridylglyoxal thiosemicarbazones as analytical reagents is given.  相似文献   

18.
A spectrophotometric method for the determination of trace amounts of tantalum (V) with 5–7-diiodo-8-hydroxyquinoline is described. With this reagent tantalum forms a yellowish-orange coloured complex which is stable in the pH range of 8.5–9.0. The coloured complex obeys Beer's law over the concentration range of 1–10 μg tantalum (V) ml?1 at 415 nm in aqueous solution with a molar absorptivity of 5.305×103 l mol?1 cm?1. The metal; ligand ratio ML2 was confirmed by Job's continuous variation and mole ratio methods. The method was used to determine tantalum in steels.  相似文献   

19.
A new spectrophotometric method was developed for the determination of aminomethylbenzoic acid (PAMBA) using 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The method was based on the formation of charge transfer (CT) complex of this drug as n‐electron donor with the π‐acceptor TCNQ. TCNQ was found to react with PAMBA to produce a kind of yellow complex. The CT reaction proceeded quantitatively in pH 8.5 buffer solution. Different variables affecting the reaction were carefully studied and optimized. Under optimal reaction conditions, the stoichiometric ratio of the reaction, maximum absorption wavelength and the value of molar absorptivity were measured to be 1:1, 425 nm, and 1.9×104 L·mol?1·cm?1, respectively. Beer′s law was obeyed in the range of 1–9 µg·mL?1 of PAMBA. The data have been filled to a linear regression equation A=?0.2612+0.1123c (µg·mL?1), with a correlation coefficient of 0.9996. The detection limit was 0.4 µg·mL?1, R.S.D. was less than 1.9%, and average recovery was over 97.6%. The formation of the CT complex was also confirmed by both infrared and 1H NMR measurements. The thermodynamic property, kinetic property and reaction mechanism have also been discussed. The method developed was applied successfully to the determination of the subject drug in its pharmaceutical dosage forms with good precision and accuracy compared to official method revealed by t‐ and F‐tests.  相似文献   

20.
在弱酸性HC1-NaAc缓冲介质中,曙红Y(EY)在可见光区有强烈的光吸收,其最大吸收波长(lmax)位于517 nm处,而聚乙烯吡咯烷酮(PVP)在250-700 nm之间无光吸收,当EY与PVP反应形成结合产物时,EY发生明显的褪色作用,最大褪色波长仍位于517 nm,并在545 nm处出现一个较小的吸收峰。其褪色程度(DA)与PVP浓度在0.40~3.20 µg mL-1范围成线性关系,此褪色反应的灵敏度高,摩尔吸光系数(ε)是6.4 × 106 L mol-1 cm-1,对PVP的检出限为0.12 µg mL-1。并研究了反应的影响因素,结果表明方法具有较好的选择性,据此发展了一种曙红Y褪色分光光度法测定PVP的新方法。方法简便快速,可用于啤酒中PVP的定量测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号