首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exopolymers are thought to influence bacterial adhesion to surfaces, but the time-dependent nature of molecular-scale interactions of biopolymers with a surface are poorly understood. In this study, the adhesion forces between two proteins and a polysaccharide [Bovine serum albumin (BSA), lysozyme, or dextran] and colloids (uncoated or BSA-coated carboxylated latex microspheres) were analyzed using colloid probe atomic force microscopy (AFM). Increasing the residence time of an uncoated or BSA-coated microsphere on a surface consistently increased the adhesion force measured during retraction of the colloid from the surface, demonstrating the important contribution of polymer rearrangement to increased adhesion force. Increasing the force applied on the colloid (loading force) also increased the adhesion force. For example, at a lower loading force of approximately 0.6 nN there was little adhesion (less than -0.47 nN) measured between a microsphere and the BSA surface for an exposure time up to 10 s. Increasing the loading force to 5.4 nN increased the adhesion force to -4.1 nN for an uncoated microsphere to a BSA surface and to as much as -7.5 nN for a BSA-coated microsphere to a BSA-coated glass surface for a residence time of 10 s. Adhesion forces between colloids and biopolymer surfaces decreased inversely with pH over a pH range of 4.5-10.6, suggesting that hydrogen bonding and a reduction of electrostatic repulsion were dominant mechanisms of adhesion in lower pH solutions. Larger adhesion forces were observed at low (1 mM) versus high ionic strength (100 mM), consistent with previous AFM findings. These results show the importance of polymers for colloid adhesion to surfaces by demonstrating that adhesion forces increase with applied force and detention time, and that changes in the adhesion forces reflect changes in solution chemistry.  相似文献   

2.
Both proteins and polysaccharides are biopolymers present on a bacterial surface that can simultaneously affect bacterial adhesion. To better understand how the combined presence of proteins and polysaccharides might influence bacterial attachment, adhesion forces were examined using atomic force microscopy (AFM) between colloids (COOH- or protein-coated) and polymer-coated surfaces (BSA, lysozyme, dextran, BSA+dextran and lysozyme+dextran) as a function of residence time and ionic strength. Protein and dextran were competitively covalently bonded onto glass surfaces, forming a coating that was 22-33% protein and 68-77% dextran. Topographic and phase images of polymer-coated surfaces obtained with tapping mode AFM indicated that proteins at short residence times (<1 s) were shielded by dextran. Adhesion forces measured between colloid and polymer-coated surfaces at short residence times increased in the order protein+dextran < or = protein < dextran. However, the adhesion forces for protein+dextran-coated surface substantially increased with longer residence times, producing the largest adhesion forces between polymer coated surfaces and the colloid over the longest residence times (50-100 s). It was speculated that with longer interaction times the proteins extended out from beneath the dextran and interacted with the colloid, leading to a molecular rearrangement that increased the overall adhesion force. These results show the importance of examining the effect of the combined adhesion force with two different types of biopolymers present and how the time of interaction affects the magnitude of the force obtained with two-polymer-coated surfaces.  相似文献   

3.
Atomic force microscopy in conjunction with the colloid (silica) probe technique has been used to quantify the variations in electrical double-layer interactions and adhesion at different locations on a rough reverse osmosis membrane (AFC99) surface in NaCl solutions. Prior scanning of the membrane surface with the colloid probe allowed precise location for force measurements. The membrane surface was composed entirely of peaks and valleys with a surface roughness substantially greater than that of most other types of polymeric membranes. The magnitude of the electrical double-layer repulsion between the colloid probe and the membrane at peaks on the membrane surface was greatly reduced compared to that in the valleys. Nevertheless, adhesion of the colloid probe was lower at the peaks on the membrane surface than in the valleys with the difference increasing with decreasing salt concentration, and reaching a factor of more than 20 in 10(-3) M solution. The study shows that minimization of membrane fouling by colloids could be achieved by choosing membranes with a roughness periodicity preventing penetration of foulants into valleys on the surface. Copyright 2000 Academic Press.  相似文献   

4.
Phosphate-modified AFM tips were prepared by the deposition of self-assembled monolayers (SAMs) of bis(11-thioundecyl) phosphate on Au-coated silicon nitride cantilevers. The properties of the PO(2)H-terminated SAMs were investigated by studying the pH-dependent force interactions of the tips with phosphate- and carboxylic acid-terminated SAM control surfaces. The PO(2)H functional groups had a pK(a) of approximately 5.0. A chemical force microscopy (CFM) study was conducted on the interactions between the probes and the surfaces of hydrous ferric oxide particles prepared in our laboratory by hydrolytic precipitation from FeCl(3). The forces between PO(2)H probes and the hydrous ferric oxide surfaces were seen to exhibit a strong pH dependence, with maximum attractive forces occurring for pH values between 5 and 8. The effects of postprecipitation of the hydrous ferric oxide colloids with orthophosphate, H(2)PO(4)(-), dimethylphosphate, (CH(3)O)(2)PO(2)H (DMP), and tannic acid (TA) on the adhesive interactions between the PO(2)H tips and the solids were also investigated. Attenuated total reflectance infrared spectroscopy (ATR-IR) was used to verify the presence of surface-adsorbed species and zeta potentiometric measurements to determine surface charge on the colloids. We show that the method of chemical force titration using phosphate-terminated tips can differentiate between these various colloids and that it shows promise as a general method for studying this environmentally important class of compounds.  相似文献   

5.
In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force curves in such a system showed a steric repulsion in the compression force curve, due to the compression of the cells by the colloid probe, and an adhesion force in the decompression force curve, due to binding events between the cell and the probe. We also investigated for the first time how the position on the cell surface, the strength of the pushing force, and the residence time of the probe at the cell surface individually affected the adhesion force between a living cell and a 6.84 μm diameter silica colloid particle in L-15. The position of measuring the force on the cell surface was seen not to affect the value of the maximum adhesion force. The loading force was also seen not to notably affect the value of the maximum adhesion force, if it was small enough not to pierce and damage the cell. The residence time of the probe at the cell surface, however, clearly affected the adhesion force, where a longer residence time gave a larger maximum force. From these results, we could conclude that the AFM force measurements should be made using a loading force small enough not to damage the cell and a fixed residence time, when comparing results of different systems.  相似文献   

6.
Latex particles with an average diameter of 70 nm, functionalized at the surface with carboxylic groups, are chemically coated by layer-by-layer deposition onto a spherical probe attached on an atomic force microscope cantilever. The forces between poly(styrene-acrylic acid) latex nanoparticles and differently terminated zinc oxide surfaces are studied by a homemade atomic force microscope based apparatus. The results confirmed a preferred adhesion of the latex particles to zinc-terminated ZnO faces, 0001, compared to oxygen-terminated and apolar faces. The method proposed allows the measurement of the interaction between nanometric particles and planar surfaces, which may be of interest for different applications in surface and colloid sciences.  相似文献   

7.
以普通硅胶为载体, 采用表面金属有机化学合成技术, 通过“一锅”反应制备了硅胶表面金属有机钛化合物, 然后经高温煅烧获得了硅胶表面氧化钛. 采用傅里叶变换红外光谱(FTIR)、 X射线光电子能谱(XPS)、 热重分析(TG-DTA)及原子力显微镜(AFM)对硅胶表面金属有机钛化合物和表面氧化钛进行了结构表征. 结果表明, 高温煅烧过程中, 硅胶表面金属有机钛化合物不仅脱除了有机配体, 并且通氧使其表面“再生”羟基, 确保了钛的四配位形式不变; 氧化钛通过Si—O—Ti键锚定在硅胶表面, 呈分散、 孤立状态分布. 高温煅烧后, 硅胶的骨架结构保持完好.  相似文献   

8.
The atomic force microscope (AFM) has been used to examine the stickiness of bacteria on the basis of the analysis of approach and retraction force curves between the AFM tip and the bacterial surface. One difficulty in analyzing approach curve data is that the distance between the AFM tip and the surface of the bacterium is difficult to define. The exact distances are difficult to determine because the surface of the bacterium deforms during force imaging, producing a highly nonlinear region in the approach curve. In this study, AFM approach and retraction curves were obtained using a colloid probe AFM for three strains of Escherichia coli (D21, D21f2, and JM109). These strains differed in their relative adhesion to glass surfaces, on the basis of measurements of sticking coefficients in packed bed flow through column tests. A gradient force curve analysis method was developed to model the interactions between the colloid probe and a surface. Gradient analysis of the approach curve revealed four different regions of colloid-surface interactions during the approach and contact of the probe with the bacterial surface: a noninteraction region, a noncontact phase, a contact phase, and a constant compliance region. The noncontact phase, which ranged from 28 to 59 nm for the three bacterial strains, was hypothesized to arise primarily from steric repulsion of the colloid by extracellular polymers on the bacterial surface. The contact phase, spanning 59-113 nm, was believed to arise from the initial pressure of the colloid on the outer membrane of the cell. The constant compliance region likely reflected the response of the colloid probe to the stiff peptidoglycan layer that confers strength and rigidity to gram negative bacteria. It was shown that the sticking coefficients reported for the three E. coli strains were correlated with the length of the noncontact phase but not the properties of the other phases. Sticking coefficients were also not correlated with any parameters determined from retraction force curves such as pull-off distances or separation energies. These results show that gradient analysis is useful for studying the contribution of the length of the exopolymers on the cell surface to bacterial adhesion to glass surfaces.  相似文献   

9.
The adsorption and decomposition of benzoic acid on the Cu(110) surface has been investigated using temperature-programmed reaction (TPR) spectroscopy and scanning tunneling microscopy (STM). The benzoate species is found to exist in two conformations: a phase containing upright species at monolayer saturation and a phase containing many tilted species at lower coverages. Thermal decomposition begins to occur near 500 K, yielding benzene and CO2. It is found that phenyl radicals, generated preferentially from the tilted benzoate species, efficiently abstract H atoms from undecomposed benzoate species to produce benzene in a rate-controlling process with an activation energy of about 29 kcal/mol. Using deuterium atom substitution at the 4-C position on the benzoate ring, it is found that the hydrogen abstraction reaction is selective for 2-,3- and 5-,6-C-H bonds. This observation indicates that the mobile phenyl radical is surface bound and preferentially attacks C-H bonds which are nearest the Cu surface binding the benzoate species, either as an upright species or as a tilted species.  相似文献   

10.
The adsorption of phenol, an aromatic compound with a hydrogen-bonding group, onto a silica surface in cyclohexane was investigated by colloidal probe atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and adsorption isotherm measurements. ATR-FTIR measurements on the silica surface indicated the formation of surface macroclusters of phenol through hydrogen bonding. The ATR-FTIR spectra were also measured on the H-terminated silicon surface to observe the effect of the silanol groups on the phenol adsorption. The comparison of the ATR-FTIR spectra for both the silicon oxide and H-terminated silicon surfaces proved that the silanol groups are necessary for the formation of phenol clusters on the surface. The surface force measurement using colloidal probe AFM showed a long-range attraction between the two silica surfaces in phenol-cyclohexane mixtures. This long-range attraction resulted from the contact of the adsorbed phenol layers for the phenol concentrations below 0.6 mol %, at which no significant phenol clusters formed in the bulk solution. The attraction started to decrease at 0.6 mol % phenol due to the exchange of the phenol molecules between the clusters in the bulk phase and on the surface. The surface density of phenol in the adsorbed layer was calculated on the basis of the long-range attraction and found to be much smaller than the liquid phenol density. The plausible structure of the adsorbed phenol layer was drawn by referring to the crystal structure of the bulk phenol and orientation of the phenol molecules on the surface, estimated by the dichroic analysis of ATR-FTIR spectroscopy. The investigation of the phenol adsorption on the silica surface in a nonpolar solvent using this novel approach demonstrated the effect of the aromatic ring on the surface packing density.  相似文献   

11.
Proteins are important in bacterial adhesion, but interactions at molecular-scales between proteins and specific functional groups are not well understood. The adhesion forces between four proteins [bovine serum albumin (BSA), protein A, lysozyme, and poly-d-lysine] and COOH, NH2 and OH-functionalized (latex) colloids were examined using colloid probe atomic force microscopy (AFM) as the function of colloid residence time (T) and solution ionic strength (IS). For three of the proteins, OH-functionalized colloids produced higher adhesion forces to proteins (2.6-30.5 nN; IS=1 mM, T=10s) than COOH- and NH2-functionalized colloids (1.6-6.8 nN). However, protein A produced the largest adhesion force (8.1+/-1.0 nN, T=10 s) with the COOH-functionalized colloid, demonstrating the importance of specific and unanticipated protein-functional group interactions. The NH2-functionalized colloid typically produced the lowest adhesion forces with all proteins, likely due to repulsive electrostatic forces and weak bonds for NH2-NH2 interactions. The adhesion force (F) between functionalized colloids and proteins consistently increased with residence time (T), and data was well fitted by F=ATn. The constant value of n=0.21+/-0.07 for all combinations of proteins and functionalized colloids indicated that water exclusion and protein rearrangement were the primary factors affecting adhesion over time. Adhesion forces decreased inversely with IS for all functional groups interacting with surface proteins, consistent with previous findings. These results demonstrate the importance of specific molecular-scale interactions between functional groups and proteins that will help us to better understand factors colloidal adhesion to surfaces.  相似文献   

12.
A model was developed for the effect of van der Waals interactions between a rough, deformable, spherical colloid and a flat, smooth, hard surface in contact. The model demonstrates the significant effect of colloid roughness on removal force. Small changes in colloid roughness produce large changes in the predicted removal force. Several authors attribute discrepancies in the observed interaction force between particles and surfaces to colloid roughness, and our model supports their hypotheses. Experimental data documenting the force required to remove colloids of polystyrene latex from silica substrates in aqueous solution were collected during AFM studies of this system. When colloid roughness exists, as is the case in this work, our model bounds the observed removal force. The predicted range of removal forces is in better quantitative agreement with our removal force data than are forces predicted by classical DLVO theory. Copyright 2000 Academic Press.  相似文献   

13.
The molecular interaction force of the intermonolayer hydrogen bonding between phenylurea groups on a probe tip and carboxyl groups in self-assembled monolayers was measured directly by means of atomic force microscopy in ethanol. Gold-coated AFM probe tips were modified chemically with 2-(N'-phenylureido)ethanethiol possessing a terminal urea moiety, which is a well-known powerful functionality for forming stable hydrogen bondings with neutral and anionic species. Adhesion force measurements were carried out on gold substrates coated with a COOH-terminated SAM composed of 6-mercaptohexanoic acid in ethanol using the phenylurea-functionalized probe tip. The adhesion force observed was decreased in the presence of H2PO4(-) in the measurement bath, indicating that the intermonolayer hydrogen bonding between the phenylurea moieties and carboxyl groups attached covalently to the probe tip and substrate, respectively, is suppressed by the anion added to the measurement solution. The specific hydrogen-bonding force was measured on binary mixed SAMs prepared by mixing 6-mercaptohexanoic acid with 1-hexanethiol. The individual hydrogen-bonding force between the phenylurea-modified tip and the binary mixed SAMs with various fractions of MHA was evaluated by repetitive force measurements and their statistical analyses by an autocorrelation method. We discuss the effect of diluting the COOH-terminated component in the mixed SAM on the adhesion force and the single force between the phenylurea and carboxyl groups in terms of competition between intermonolayer and intramonolayer hydrogen bonding.  相似文献   

14.
In situ AFM study of sorbed humic acid colloids at different pH   总被引:7,自引:0,他引:7  
Humic acid colloids adsorbed on the basal plane of cleaved muscovite are investigated under in situ conditions by non-contact mode atomic force microscopy (AFM) in liquid (also called fluid tapping-mode AFM). Structures are found to be of nanometer scale, consisting of flat particles (8–13 nm in diameter), aggregates of particles (20–100 nm), chain-like assemblies, networks and torus-like structures. In contrast to former investigations colloids are investigated in aquatic solution and structures are not influenced by sample preparation. Nanostructure, surface coverage and particle sizes are found to depend on solution pH. Humic colloids can be distinguished from surface roughness and background noise by image processing. Furthermore, an approach to quantify the surface coverage is discussed. Therefore, non-contact mode AFM in liquid is shown to be a powerful method to study the interaction of colloids at solid–liquid interfaces.  相似文献   

15.
PET/PC共混体系的酯交换反应对其高压结晶行为的影响   总被引:1,自引:1,他引:0  
利用转矩流变仪、DSC、SEM及WAXD等表征手段研究了PET/PC共混体系的酯交换反应对其高压结晶行为的影响.SEM观察表明,PET和PC熔混时的酯交换反应有利于PET/PC体系在高压结晶时生成厚度较大的伸直链晶体,且可以促进其高压下酯交换反应的发生.楔形伸直链晶体和弯曲伸直链晶体的存在证明链滑移扩散和酯交换反应两种机制对体系中聚酯伸直链晶体的增厚有贡献.拟合分峰法和War-ren-Averbach傅里叶分析法的计算结果表明,随PET/PC体系熔混时酯交换反应程度的增加,高压结晶共混物的结晶度降低,PET的平均微晶尺寸增大,点阵畸变平均值则减小,而微晶尺寸分布变宽.提出了在共聚物组分都具备结晶能力时,结晶诱导化学反应和化学反应诱导结晶两种过程在一定条件下可同时发生的观点.  相似文献   

16.
胶体颗粒在聚电解质多层膜表面的可控组装   总被引:2,自引:1,他引:1  
利用原子力显微镜和扫描电子显微镜研究了磺化聚苯乙烯胶体颗粒在由聚二甲基二烯丙基氯化铵和聚苯乙烯磺酸钠层状自组装而成的多层膜表面的组装.该组装受表面性质影响,通过对多层膜的最外层的组装条件或利用盐溶液对多层膜进行后处理可以控制胶体颗粒在膜表面的组装密度.  相似文献   

17.
The effect of particle size on the reactivity of hexyltrimethoxysilane (C6S) with the particle surface was studied by using silica nanoparticles (SNPs) with different diameters (30 or 200 nm). In case of 30-nm SNPs, a large amount of isolated silanol was observed. On the other hand, in the case of 200-nm SNPs, the amount of hydrogen bonded silanol and hydrogen bonded water molecules at the surface of the SNPs increased. Since the hydrogen bonded silanol and the hydrogen bonded water enhanced the reaction of C6S with SNPs, the chemisorbed C6S on 200-nm SNPs was larger than that on 30-nm SNPs. Furthermore, the effects of surface modification on the dispersion stability in MEK were studied using viscosity measurements and surface force measurements by the AFM colloid probe method. The viscosity of the dilute SNPs/MEK suspension did not change by the chemisorptions of C6S; however, the viscosity of dense suspension reduced effectively by surface modification. It was estimated that the suspension viscosity reduced effectively when the mean particle surface distance in the suspension was near to the distance where the repulsive force appeared by the surface force measurements using the colloid probe AFM.  相似文献   

18.
The stability and aggregation behavior of iron oxide colloids in natural waters play an important role in controlling the fate, transport, and bioavailability of trace metals. Time-resolved dynamic light scattering experiments were carried out in a study of the aggregation kinetics and aggregate structure of natural organic matter (NOM) coated hematite colloids and bare hematite colloids. The aggregation behavior was examined over a range of solution chemistries, by adjusting the concentration of the supporting electrolyte-NaCl, CaCl2, or simulated seawater. With the solution pH adjusted so that NOM-coated and bare hematite colloids were at the same zeta potential, we observed a significant difference in colloid stability which results from the stability imparted to the colloids by the adsorbed NOM macromolecules. This enhanced stability of NOM-coated hematite colloids was not observed with CaCl2. Aggregate form expressed as fractal dimension was determined for both NOM-coated and bare hematite aggregates in both NaCl and CaCl2. The fractal dimensions of aggregates formed in the diffusion-limited regime indicate slightly more loosely packed aggregates for bare hematite than theory predicts. For NOM-coated hematite, a small decrease in fractal dimension was observed when the solution composition changed from NaCl to CaCl2. For systems in the reaction-limited regime, the measured fractal dimensions agreed with those in the literature. Colloid aggregation was also studied in synthetic seawater, a mixed cation system to simulate estuarine mixing. Those results describe the important phenomena of iron oxide aggregation and sedimentation in estuaries. When compared to field data from the Mullica Estuary, U.S.A., it is shown that collision efficiency is a good predictor of the iron removal in this natural system.  相似文献   

19.
双亲性无规共聚物P(VM-co-AMPS)的自组装及其性能   总被引:1,自引:0,他引:1  
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和苯乙烯类光敏单体7-(4-乙烯基苄氧基)-4-甲基香豆素(VM)为共聚单体,采用自由基聚合法制备了光敏性双亲共聚物P(VM-co-AMPS)。P(VM-co-AMPS)在溶剂水中自组装胶束化,用原子力显微镜(AFM)表征了自组装胶体粒子的形态、粒径及其分布。紫外光照使胶体粒子中香豆素基元发生光二聚反应,用紫外-可见光分光光度计(UV-Vis)跟踪其光二聚交联过程,用光学显微镜考察了胶体粒子的乳化性能。结果表明:胶体粒子具有较好的紫外吸收性能和较好的乳化性能。该胶束制备工艺简单,条件温和,避免了溶剂的使用。  相似文献   

20.
The silicon surface of commercial atomic force microscopy (AFM) probes loses its hydrophilicity by adsorption of airborne and package-released hydrophobic organic contaminants. Cleaning of the probes by acid piranha solution or discharge plasma removes the contaminants and renders very hydrophilic probe surfaces. Time-of-flight secondary-ion mass spectroscopy and X-ray photoelectron spectroscopy investigations showed that the native silicon oxide films on the AFM probe surfaces are completely covered by organic contaminants for the as-received AFM probes, while the cleaning methods effectively remove much of the hydrocarbons and silicon oils to reveal the underlying oxidized silicon of the probes. Cleaning procedures drastically affect the results of adhesive force measurements in water and air. Thus, cleaning of silicon surfaces of the AFM probe and sample cancelled the adhesive force in deionized water. The significant adhesive force values observed before cleaning can be attributed to formation of a bridge of hydrophobic material at the AFM tip-sample contact in water. On the other hand, cleaning of the AFM tip and sample surfaces results in a significant increase of the adhesive force in air. The presence of water soluble contaminants at the tip-sample contact lowers the capillary pressure in the water bridge formed by capillary condensation at the AFM tip-sample contact, and this consequently lowers the adhesive force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号