首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
We have investigated solvent and rotational relaxation of coumarin 153 (C-153) in room-temperature ionic liquid (RTILs) 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF(4)]) and the ionic liquid confined in alkyl poly(oxyethylene glycol) ethers containing micelles. We have used octaethylene glycol monotetradecyl ether (C(14)E(8)) and octaethylene glycol monododecyl ether (C(12)E(8)) as surfactants. In the [bmim][BF(4)]-C(14)E(8) micelle, we have observed only a 22% increase in solvation time compared to neat [bmim][BF(4)], whereas in the [bmim][BF(4)]-C(12)E(8) system, we have observed approximately 57% increase in average solvation time due to micelle formation. However, the slowing down in solvation time on going from neat RTIL to RTIL-confined micelles is much smaller compared to that on going from water to water confined micellar aggregates. The 22-57% increase in solvation time is attributed to the slowing down of collective motions of cations and anions in micelles. The rotational relaxation times become faster in both the micelles compare to neat [bmim][BF(4)].  相似文献   

2.
The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400 ps and 1.10 ns.  相似文献   

3.
The dynamics of solvent and rotational relaxation of Coumarin 153 (C-153) in ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and in the ionic liquid confined in Brij-35 micellar aggregates have been investigated using steady-state and time-resolved fluorescence spectroscopy. We observed slower dynamics in the presence of micellar aggregates as compared to the pure IL. However, the slowing down in the solvation time on going from neat IL to IL-confined micelles is much smaller compared to that on going from water to water-confined micellar aggregates. The increase in solvation and rotational time in micelles is attributed to the increase in viscosity of the medium. The slow component is assumed to be dependent on the viscosity of the solution and involves large-scale rearrangement of the anions and cations while fast component is assumed to originate from the initial response of the anions during excitation. The slow component increases due to the increase in the viscosity of the medium and increase in fast component is probably due to the hydrogen bonding between the anions and polar headgroup of the surfactant. The dynamics of solvent relaxation was affected to a small extent due to the micelle formation.  相似文献   

4.
The interaction of ionic liquid with water in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/Triton X-100 (TX-100)/H2O ternary microemulsions, i.e., "[bmim][PF6]-in-water" microregions of the microemulsions, has been studied by the dynamics of solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 151 (C-151). The variation of the time constants of solvent relaxation of C-153 is very small with an increase in the [bmim][PF6]/TX-100 ratio (R). The rotational relaxation time of C-153 also remains unchanged in all micremulsions of different R values. The invariance of solvation and rotational relaxation times of C-153 indicates that the position of C-153 remains unaltered with an increase in R and probably the probe is located at the interfacial region of [bmim][PF6] and TX-100 in the microemulsions. On the other hand, in the case of C-151, with an increase in R the fast component of the solvation time gradually increases and the slow component gradually decreases, although the change in solvation time is small in comparison to that of microemulsions containing common polar solvents such as water, methanol, acetonitrile, etc. The rotational relaxation time of C-151 increases with an increase in R. This indicates that with an increase in the [bmim][PF6] content the number of C-151 molecules in the core of the microemulsions gradually increases. In general, the solvent relaxation time is retarded in this room temperature ionic liquid/water-containing microemulsion compared to that of a neat solvent, although retardation is very small compared to that of the solvent relaxation time of the conventional solvent in the core of the microemulsions.  相似文献   

5.
Room temperature ionic liquids are rapidly emerging as a new class of media that are ideally suited for various applications including carrying out chemical reactions. In the present article, we report the photophysics of a β-carboline analogue, namely, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), in three room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO(4)]), 1-butyl-3-methylimidazolium octyl sulfate ([BMIM][C(8)SO(4)]) and 1-ethyl-3-methylimidazolium methyl sulfate ([EMIM][MeSO(4)]). Out of these, [BMIM][C(8)SO(4)] is a typical RTIL that forms micellar aggregates above a critical micellar concentration (CMC). Steady state absorption, steady state and time resolved fluorescence techniques are used to probe the properties of these systems. The investigation reveals that the photophysics of AODIQ is modified significantly in the micelle-forming RTIL as compared to that in the other two. A comparative study with the fluorophore in [BMIM][C(8)SO(4)] and a conventional anionic surfactant of a similar hydrophobic chain length from the sodium-n-alkyl sulfate series, viz., sodium octyl sulfate (S(8)S), reveals that the fluorophore experiences a more constrained environment in the RTIL micelle as compared to the conventional anionic micelle.  相似文献   

6.
The effects of confinement of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on solvation dynamics and rotational relaxation of Coumarin 153 (C-153) in Triton X-100/cyclohexane microemulsions have been explored using steady-state and picosecond time-resolved emission spectroscopy. The steady-state and rotational relaxation data indicate that C-153 molecules are incorporated in the core of the microemulsions. The average rotational relaxation time increases with increase in w ([bmim][BF(4)]/[TX-100]) values. The solvent relaxation in the core of the microemulsion occurs on two different time scales and is almost insensitive to the increase in w values. The solvent relaxation is retarded in the pool of the microemulsions compared to the neat solvent. Though, the retardation is very small compared to several-fold retardation of the solvation time of the conventional solvent inside the pool of the microemulsions.  相似文献   

7.
Light scattering and dielectric spectroscopy measurements were performed on the room temperature ionic liquid (RTIL) [C4mim][NTf2] in a broad temperature and frequency range. Ionic conductivity was used to estimate self-diffusion of ions, while light scattering was used to study structural relaxation. We demonstrate that the ionic diffusion decouples from the structural relaxation process as the temperature of the sample decreases toward T(g). The strength of the decoupling appears to be significantly lower than that expected for a supercooled liquid of similar fragility. The structural relaxation process in the RTIL follows well the high-temperature mode coupling theory (MCT) scenario. Using the MCT analysis we estimated the dynamic crossover temperature in [C4mim][NTf2] to be T(c) ~ 225 ± 5 K. However, our analysis reveals no sign of the dynamic crossover in the ionic diffusion process.  相似文献   

8.
The use of room-temperature ionic liquids (RTILs) in the Sharpless catalytic asymmetric dihydroxylation (AD) as a cosolvent or replacement of the tert-butanol was studied in detail by screening 11 different RTILs. The AD reaction is faster in 1-n-butyl-3-methylimidazolium hexafluorophosphate [C(4)mim][PF(6)] as a cosolvent than in the conventional system of tert-butanol/H(2)O. For the range of six substrates tested, comparable or even higher yields and enantiomeric excess (ee) were found using [C(4)mim][PF(6)] or 1-n-octyl-3-methylimidazolium hexafluorophosphate [C(8)mim][PF(6)] compared to the conventional solvent system. Due to high affinity of the catalytic osmium/quiral ligand system to the ionic liquid, the use of ionic liquid/water (biphasic) or ionic liquid/water/tert-butanol (monophasic) solvent systems provides a recoverable, reusable, robust, efficient, and simple system for the AD reaction. Using 1-hexene and [C(4)mim][PF(6)] as RTIL it was possible to reuse the catalytic system for 9 cycles with only a 5% of yield reduction from the first cycle, allowing an overall yield of 87%, TON = 1566, and with similar ee. Additionally, for each cycle, after extraction of the reaction mixture with diethyl ether, the osmium content in the organic phase (containing the AD product) and in the aqueous phase was in the range of the detection limit (相似文献   

9.
The dynamics of solvent relaxation in ionic liquid (IL)-water, IL-methanol, and IL-acetonitrile mixtures have been investigated using steady state and picosecond time-resolved fluorescence spectroscopy. We have used Coumarin 153 (C-153) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF(6)]) as fluorescence probe and IL, respectively. The steady-state emission spectra showed that the gradual addition of cosolvents increases the polarity of the mixtures. In neat [hmim][PF(6)] and all IL-cosolvent mixtures, solvation occurs in two well-separated time regimes within the time resolution of our instrument. A substantial portion of the solvation has been missed due to the limited time resolution of our instrument. The gradual addition of cosolvents decreases the viscosity of the medium and consequently solvation time also decreases. The decrease in solvation time is more pronounced on addition of acetonitrile compared to water and methanol. The rotational relaxation time of the probe is also decreasing with gradual addition of the cosolvents. The decrease in viscosity of the solution is responsible for the decrease in the rotational relaxation time of the probe molecule.  相似文献   

10.
The spontaneous micelle‐to‐vesicle transition in an aqueous mixture of two surface‐active ionic liquids (SAILs), namely, 1‐butyl‐3‐methylimidazolium n‐octylsulfate ([C4mim][C8SO4]) and 1‐dodecyl‐3‐methylimidazoium chloride ([C12mim]Cl) is described. In addition to detailed structural characterization obtained by using dynamic light scattering, transmission electron microscopy (TEM), and cryogenic TEM techniques, ultrafast fluorescence resonance energy transfer (FRET) from coumarin 153 (C153) as a donor (D) to rhodamine 6G (R6G) as an acceptor (A) is also used to study micelle–vesicle transitions in the present system. Structural transitions of SAIL micelles ([C4mim][C8SO4] or [C12mim]Cl micelles) to mixed SAIL vesicles resulted in significantly increased D –A distances, and therefore, increased timescale of FRET. In [C4mim][C8SO4] micelles, FRET between C153 and R6G occurs on an ultrafast timescale of 3.3 ps, which corresponds to a D –A distance of about 15 Å. As [C4mim][C8SO4] micelles are transformed into mixed micelles upon the addition of a 0.25 molar fraction of [C12mim]Cl, the timescale of FRET increases to 300 ps, which suggests an increase in the D –A distance to 31 Å. At a 0.5 molar fraction of [C12mim]Cl, unilamellar vesicles are formed in which FRET occurs on multiple timescales of about 250 and 2100 ps, which correspond to D –A distances of 33 and 47 Å. Although in micelles and mixed micelles the obtained D –A distances are well correlated with their radius, in vesicles the obtained D –A distance is within the range of the bilayer thickness.  相似文献   

11.
Solvation dynamics in four imidazolium cation based room temperature ionic liquids (RTIL) have been calculated by using the recently measured dielectric relaxation data [ J. Phys. Chem. B 2008, 112, 4854 ] as an input in a molecular hydrodynamic theory developed earlier for studying solvation energy relaxation in polar solvents. Coumarin 153 (C153), 4-aminophthalimide (4-AP), and trans-4-dimethylamino-4'-cyanostilbene (DCS) have been used as probe molecules for this purpose. The medium response to a laser-excited probe molecule in an ionic liquid is approximated by that in an effective dipolar medium. The calculated decays of the solvent response function for these RTILs have been found to be biphasic and the decay time constants agree well with the available experimental and computer simulation results. Also, no probe dependence has been found for the average solvation times in these ionic liquids. In addition, dipolar solvation dynamics have been predicted for two other RTILs for which experimental results are not available yet. These predictions should be tested against experiments and/or simulation studies.  相似文献   

12.
本文把短链离子液体(IL)四氟硼酸1-乙基-3-甲基咪唑鎓[C2mim]BF4引入正负离子表面活性剂十二烷基硫酸钠(SDS)和十二烷基三甲基溴化铵(DTAB)双水相体系(SDS/DTAB/H2O)中,研究了IL对双水相相图及相分离体系性质的影响。结果表明,[C2mim]BF4的阳离子性质是影响阴离子表面活性剂过量区域性质的主要因素,IL通过静电作用、氢键作用等改变体系中聚集体的形貌,最终导致阴离子双水相(ATPSa)的消失。IL的阴离子对阳离子双水相(ATPSc)区域性质起着决定作用;IL的盐效应引起的对表面活性剂混合胶束扩散双电层的压缩作用,不但促进胶团的形成,缩短了形成稳定胶团所需要的时间,加快了双水相的相分离速度,而且也造成了形成ATPSc所需DTAB含量的提高。IL的引入改变了ATPSc上、下相表面活性剂的组成及含量,使富含表面活性剂的上相中阳离子表面活性剂含量更高,进而提高了双水相的萃取性能,其上相对甲基橙的萃取效率可高达96.67%。  相似文献   

13.
Femtosecond solvation dynamics of coumarin 480 (C480) in a mixed micelle is reported. The mixed micelle consists of a triblock copolymer (PEO)20-(PPO) 70-(PEO)20 (Pluronic P123) and an ionic liquid (IL), 1-pentyl-3-methylimidazolium tetrafluoroborate ([pmim][BF4]). At a low concentration (0.3 M), the sparingly water soluble IL ([pmim][BF4]) penetrates the hydrophobic PPO core of the P123 micelles. Thus emission maximum of C480 in the core (accessed at lambdaex=375 nm) in 0.3 M IL is red-shifted by 8 nm from that in its absence and the red edge excitation shift (REES) is large (19+/-1 nm). At a high concentration (0.9 M), the ionic liquid [pmim][BF4] invades both the core and corona region and the mixed micelle exhibits very small REES (3+/-1 nm). Anisotropy decay and solvation dynamics in different regions of the mixed micelle are studied by variation of excitation wavelength (lambda ex). In P123 micelle, the average rotational time () is 2800 ps in the core (at lambdaex=375 nm) and 1350 ps in the corona region (at lambdaex=435 nm). In 0.3 M [pmim][BF4], tau rot at the core of the mixed micelle decreases to 1950 ps while that in the corona remains unaffected. In 0.9 M IL, both the core and corona (lambda ex=375 and 435 nm) exhibit similar and short approximately 600 ps. In 0.3 M IL, solvation dynamics in the core region (lambdaex=375 nm) of P123 micelle is about 2 times faster than in its absence. In 0.3 M IL, solvation dynamics in the corona region (lambdaex=435 nm) is approximately 100 times faster than that in the core. In 0.9 M IL, the solvation dynamics in the core and in the corona is, respectively, approximately 9 times and 4 times faster than that in 0.3 M IL.  相似文献   

14.
Solvation dynamics of the fluorescence probe, coumarin 102, in anionic surfactant, sodium alkyl sulfate (C(n)H(2n+1)SO(4)Na; n = 8, 10, 12, and 14), and cationic surfactant, alkyltrimethylammonium bromide (C(n)H(2n+1)N(CH(3))(3)Br; n = 10, 12, 14, and 16), micelle solutions have been investigated by a picosecond streak camera system. The solvation dynamics in the time range of 10(-10)-10(-8) s is characterized by a biexponential function. The faster solvation time constants are about 110-160 ps for both anionic and cationic micelle solutions, and the slower solvation time constants for sodium alkyl sulfate and alkyltrimethylammonium bromide micelle solutions are about 1.2-2.6 ns and 450-740 ps, respectively. Both the faster and the slower solvation times become slower with longer alkyl chain surfactant micelles. The alkyl-chain-length dependence of the solvation dynamics in both sodium alkyl sulfate and alkyltrimethylammonium bromide micelles can be attributed to the variation of the micellar surface density of the polar headgroup by the change of the alkyl chain length. The slower solvation time constants of sodium alkyl sulfate micelle solutions are about 3.5 times slower than those of alkyltrimethylammonium bromide micelle solutions for the same alkyl-chain-length surfactants. The interaction energies of the geometry optimized mimic clusters (H(2)O-C(2)H(5)SO(4)(-) and H(2)O-C(2)H(5)N(CH(3))(3)(+)) have been estimated by the density functional theory calculations to understand the interaction strengths between water and alkyl sulfate and alkyltrimethylammonium headgroups. The difference of the slower solvation time constants between sodium alkyl sulfate and alkyltrimethylammonium bromide micelle solutions arises likely from their different specific interactions.  相似文献   

15.
The solvation of carbohydrates in N, N'-dialkylimidazolium ionic liquids (ILs) was investigated by means of 13C and 35/37Cl NMR relaxation and 1H pulsed field gradient stimulated echo (PFG-STE) diffusion measurements. Solutions of model sugars in 1- n-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-allyl-3-methylimidazolium chloride ([CC2mim]Cl), and 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) were studied to evaluate the effects of cation and anion structure on the solvation mechanism. In all cases, the changes in the relaxation times of carbon nuclei of the IL cations as a function of carbohydrate concentration are small and consistent with the variation in solution viscosities. Conversely, the 35/37Cl and 13C relaxation rates of chloride ions and acetate ion carbons, respectively, have a strong dependency on sugar content. For [C2mim][OAc], the correlation times estimated from 13C relaxation data for both ions reveal that, as the carbohydrate concentration increases, the reorientation rate of the anion decreases faster than that of the cation. Although not as marked as the variations observed in the relaxation data, similar trends were obtained from the analysis of cation and, in the case of [C2mim][OAc], anion self-diffusion coefficients of the sugar/IL systems. Our results show that the interactions between the IL cation and the solutes are nonspecific, confirm that the process is governed by the interactions between the IL anion and the carbohydrate, and, more importantly, indicate no change in the solvation mechanism regardless of the structure of the anion.  相似文献   

16.
崔慧  涂燕  尚亚卓  刘洪来 《化学通报》2017,80(7):672-678
采用离子交换法,由1-丁基-3甲基咪唑氯盐(C4mimCl)和烷基硫酸钠合成了一系列无卤素的阴离子表面活性离子液体—1-丁基-3-甲基咪唑烷基硫酸酯[C4mim][CnH2n 1SO4](n=8,12,16),利用表面张力仪、稳态荧光光谱等手段考察了表面活性离子液体在水溶液表面及体相中的聚集行为,结果表明,与传统无机反离子相比,有机咪唑阳离子[C4mim] 作为反离子的离子液体型表面活性剂具有较高的表面活性,[C4mim] 产生的氢键引起的抑制分子规则排列的作用小于其促进分子有序排列的疏水作用。长烷基链的阴离子是界面膜及胶束的主要组成成分,阴离子疏水烷基碳链的增长虽然可促进胶束的形成,但却在一定程度上抑制[C4mim] 离子参与界面或胶束的形成;阴离子所带烷基链越长,越不利于阳离子[C4mim]+参与界面膜或胶束的形成,界面膜或胶束中表面活性剂排布越松散,即界面张力越大,体系中胶束聚集数较小。  相似文献   

17.
This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].  相似文献   

18.
The effect of alkyl chain length and size of the headgroups of the surfactant on the solvation dynamics and rotational relaxation of Coumarin 480 (C-480) has been investigated using dynamic Stokes' shift of C-480 in different types of alkyltrimethylammonium bromide micelles and mixed micelles. The rotational relaxation time increases with increase in alkyl chain length of the surfactant. The increase in the number of alkyl chains of the surfactant leads to the more close packed micelles, hence the microviscosity of the micelles increases and consequently rotational relaxation time increases. Solvation time also increases due to the increase in number of alkyl chains of the surfactant. The change in solvation and rotational relaxation time is more prominent in micelles compared to mixed micelles. The solvation and rotational relaxation time also increase with the increase in size of the headgroup of the surfactant.  相似文献   

19.
While the imidazolium ionic liquids have been studied for some time, little is known about the pyrrolidinium ionic liquids. In this work, steady-state and picosecond time-resolved fluorescence behavior of three electron donor-acceptor molecules, coumarin-153 (C153), 4-aminophthalimide (AP), and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), has been studied in a pyrrolidinium ionic liquid, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, abbreviated here as [bmpy][Tf2N]. The steady-state fluorescence data of the systems suggest that the microenvironment around these probe molecules, which is measured in terms of the solvent polarity parameter, E(T)(30), is similar to that in 1-decanol and that the polarity of this ionic liquid is comparable to that of the imidazolium ionic liquids. All three systems exhibit wavelength-dependent fluorescence decay behavior, and the time-resolved fluorescence spectra show a progressive shift of the fluorescence maximum toward the longer wavelength with time. This behavior is attributed to solvent-mediated relaxation of the fluorescent state of these systems. The dynamics of solvation, which is studied from the time-dependent shift of the fluorescence spectra, suggests that approximately 45% of the relaxation is too rapid to be measured in the present setup having a time resolution of 25 ps. The remaining observable components of the dynamics consist of a short component of 115-440 ps (with smaller amplitude) and a long component of 610-1395 ps (with higher amplitude). The average solvation time is consistent with the viscosity of this ionic liquid. The dynamics of solvation is dependent on the probe molecule, and nearly 2-fold variation of the solvation time depending on the probe molecule could be observed. No correlation of the solvation time with the probe molecule could, however, be observed.  相似文献   

20.
Dynamic solvation of the dye coumarin 153 is studied in a phosphonium ionic liquid: hexadecyltributylphosphonium bromide, [(C4)3C16P+][Br-]. It forms micelles in water, and the bulk also exists as a liquid under our experimental conditions. This system permits a comparison with an imidazolium ionic liquid studied earlier, which also formed micelles in water (J. Phys. Chem. A 2006, 110, 10725-10730). We conclude that our analysis of the comparable situation in a phosphonium liquid is not as definitive as we had proposed earlier, i.e., that the majority of the early-time solvation arises from the organic cation. Part of the difficulty in performing this analysis is most likely due to the amount of water that is associated with the micelle. In the course of this work, we have focused on the calculation of the solvation correlation function, C(t), and investigated how it depends upon the methods with which the "zero-time" spectrum is constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号