首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
[reaction: see text] We have developed a one-pot procedure for the asymmetric synthesis of a synthetically challenging class of acylic secondary epoxy alcohols with three contiguous stereocenters from simple achiral starting materials. The epoxy alcohols are synthesized via a tandem catalytic asymmetric vinylation of an aldehyde coupled with a diastereoselective epoxidation reaction. A vinylzinc reagent generated in situ undergoes enantioselective addition to an aldehyde in the presence of a zinc catalyst to provide an allylic zinc alkoxide. This species is then epoxidized by addition of dioxygen and a titanium tartrate catalyst to give epoxy alcohols with excellent enantioselectivities, in most cases, and with diastereoselectivities up to 4.5:1 in favor of the threo-diastereomer. The system described herein represents a significant advance in terms of synthetic efficiency and selectivity.  相似文献   

2.
Two highly enantio- and diastereoselective one-pot procedures for the synthesis of epoxy alcohols with up to three contiguous stereocenters are reported. Route one involves asymmetric addition of an alkylzinc reagent to an enal followed by diastereoselective epoxidation. Route two entails asymmetric vinylation of an aldehyde with divinylzinc reagents and subsequent diastereoselective epoxidation. The oxidant for the epoxidation is generated by exposure of the allylic alkoxide intermediate and the remaining organozinc reagent to dioxygen. Upon addition of catalytic titanium tetraisopropoxide, the directed epoxidation yields the epoxy alcohols with good to excellent yields.  相似文献   

3.
Although over 100 catalysts have been reported to catalyze the asymmetric addition of alkyl groups to aldehydes, these catalysts fail to promote additions to ketones with >90% enantioselectivity. This paper describes the asymmetric 1,2-addition of alkyl groups to conjugated cyclic enones to give allylic alcohols with chiral quaternary centers. The resultant allylic alcohols are converted into epoxy alcohols with excellent diastereoselectivities. Treatment of the epoxy alcohols with BF3.OEt2 induces a semipinacol rearrangement to provide alpha,alpha-dialkyl-beta-hydroxy ketones with all-carbon chiral quaternary centers. We also report a one-pot procedure for the asymmetric addition/diastereoselective epoxidation reaction. Simply exposing the reaction mixture to dioxygen after the asymmetric addition reaction is complete results in epoxidation of the allylic alcohol with high diastereoselectivity.  相似文献   

4.
[reaction: see text] We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80-99%) with high enantioselectivities (79-95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84-87%).  相似文献   

5.
A simple procedure is reported for the catalytic asymmetric allylation of ketones, utilizing titanium tetraisopropoxide, BINOL, 2-propanol additive, and tetraallylstannane as allylating agent. A variety of ketone substrates, including acetophenone derivatives and alpha,beta-unsaturated cyclic enones, reacted to form tertiary homoallylic alcohols in good yields (67-99%) and with high levels of enantioselectivity (generally >80%). A novel one-pot enantioselective allylation/diastereoselective epoxidation has also been introduced. Thus, upon completion of the allyl addition to conjugated cyclic enones, 1 equiv of tert-butyl hydroperoxide is added and the directed epoxidation of the allylic double bond ensues to afford the epoxy alcohol with high diastereoselectivity.  相似文献   

6.
A solution to the long-standing problem of catalytic asymmetric vinylation of ketones is reported. Vinylzinc reagents are generated via hydrozirconation of terminal alkynes followed by transmetalation to zinc. In the presence of our catalyst, which is formed in situ from a bis(sulfonamide) diol ligand (1) and titanium tetraisopropoxide, the vinylzinc reagent undergoes 1,2-addition to a variety of ketones and enones with enantioselectivities (typically >90%) and high yields. This method is tolerant of functional groups, including alkyl, aryl and vinyl halides, esters, silyl protected alcohols, sulfides, and alkenes. Thus, enantioenriched tertiary allylic alcohols bearing a variety of functional groups can be prepared. It has also been found that 2,2-disubstituted vinylzinc reagents, substitution patterns not accessible through hydrozirconation, can be added to ketones with high enantioselectivities to generate trisubstituted allylic alcohols. Furthermore, we have developed an asymmetric addition of dienyl groups to ketones in the presence of our catalyst. This method enables the synthesis of dienols in high yields with enantioselectivities as high as 94%.  相似文献   

7.
The enantioselective epoxidation can be carried out using trichloroisocyanuric acid (TCCA) as oxidant in the presence of chiral quaternary ammonium salt as a phase-transfer catalyst; treatment of chalcone derivatives with TCCA under mild conditions afforded the corresponding epoxy ketones in good yields with moderate to excellent enantioselectivities of up to 96%.  相似文献   

8.
Many catalysts will promote the asymmetric addition of alkylzinc reagents to aldehydes. In contrast, there are no reports of additions to ketones that are both general and highly enantioselective. We describe herein a practical catalytic asymmetric addition of ethyl groups to ketones. The catalyst is derived from reaction of camphor sulfonyl chloride and trans-1,2-diaminocyclohexane. The resulting diketone is reduced with NaBH4 to give the C2-symmetric exo diastereomer. Use of this ligand with titanium tetraisopropoxide and dialkylzinc at room temperature results in enantioselective addition of the alkyl group to the ketone. The resulting tertiary alcohols are isolated with high enantiomeric excess (all cases give greater than 87% ee, except one). The reaction has been run with 37 mmol (5 g) 3-methylacetophenone and 2 mol % catalyst to afford 73% yield of the resulting tertiary alcohol with 99% ee.  相似文献   

9.
I present herewith enantioselective total syntheses of several bioactive natural products, such as (-)-strychnine, (+)-decursin, (-)-cryptocaryolone diacetate, (-)-fluoxetine, and aeruginosin 298-A, based on practical asymmetric catalyses (Michael reaction, epoxidation, and phase-transfer reaction) that I developed with co-workers in Prof. Shibasaki's group over the past 5 years. In the first part of this review, I discuss the great improvement of catalyst efficiency in an ALB-catalyzed asymmetric Michael reaction of malonate and application to the pre-manufacturing scale (greater than kilogram scale) and enantioselective total synthesis of (-)-strychnine with the development of novel domino cyclization. To broaden the substrate generality of the Michael reaction, we developed a highly stable, storable, and reusable La-O-linked-BINOL complex. Further extension of the reaction using beta-keto ester as a Michael donor was achieved with the development of a La-NR-linked-BINOL complex, thereby improving indole alkaloid syntheses. In the second section, I discuss enantioselective total synthesis of (+)-decursin using catalytic asymmetric epoxidation. To achieve the synthesis, we developed a new La-BINOL-Ph(3)As = O (1:1:1) complex catalyst system, which has much higher reactivity and broader substrate generality than the previously developed catalyst systems. This allowed us to achieve catalytic asymmetric epoxidation of alpha,beta-unsaturated carboxylic acid derivatives with high enantioselectivity and broad substrate generality for the first time by changing the lanthanide metal and reaction conditions. Among them, catalytic asymmetric epoxidation of alpha,beta-unsaturated morpholinyl amides is quite useful in terms of synthetic utility of the corresponding alpha,beta-epoxy morpholinyl amides. Highly catalyst-controlled enantio- or diastereoselective epoxidation of the alpha,beta-unsaturated morpholinyl amides, coupled with diastereoselective reduction of beta-hydroxy ketones, enabled the synthesis of all possible stereoisomers of 1,3-polyol arrays with successful enantioselective total synthesis of several 1,3-polyol natural products, such as (-)-cryptocaryolone diacetate. In addition, the development of a new regioselective epoxide-opening reaction of alpha,beta-epoxy amides to the corresponding alpha- and beta-hydroxy amides enhanced the usefulness of the present epoxidation and was applied to the enantioselective total synthesis of (-)-fluoxetine. In the final section, I report the development of a new asymmetric two-center organocatalyst (TaDiAS) and its application to the enantioselective synthesis of aeruginosin 298-A and its analogues. Because of the remarkable structural diversity of TaDiAS, a practical asymmetric phase-transfer reaction with broad substrate generality was achieved. As a result, we succeeded in developing a highly versatile synthetic method for aeruginosin 298-A and its analogues. Inhibitory activity studies of the compounds against the serine protease trypsin provided preliminary information about their structure-activity relations.  相似文献   

10.
应用C2轴对称的樟脑磺酰胺基醇配体和Cu(OTf)2催化带官能团的环己烯乙炔对酮的不对称加成反应. 芳香酮、脂肪酮和杂环酮都适用于此体系, 并且在室温下最高e.e.值约为89%, 其中脂肪酮首次被应用于此反应, 极大地扩展了底物的范围. 研究结果表明, 脂肪酮的立体位阻对反应的对映选择性起着至关重要的作用.  相似文献   

11.
Despite the potential of chiral peroxides as biologically interesting or even clinically important compounds, no catalytic enantioselective peroxidation has been reported. With a chiral catalyst not only to induce enantioselectivity but also to convert a well established epoxidation pathway into a peroxidation pathway, the first efficient catalytic peroxidation has been successfully developed. Employing readily available alpha,beta-unsaturated ketones and hydroperoxides and an easily accessible cinchona alkaloid catalyst, this novel reaction will open new possibilities in the asymmetric synthesis of chiral peroxides. Under different conditions a highly enantioselective epoxidation with the same starting materials, reagents, and catalyst has was also established.  相似文献   

12.
Highly diastereoselective and enantioselective catalytic capture of chiral zinc enolates using nitroolefins as electrophiles is described. The tandem products γ-nitro ketones were obtained in good yields with high diastereoselectivities and enantioselectivities. The γ-nitro ketones were readily hydrogenated to the optically enriched and diastereomerically pure chiral pyrrolidines with four contiguous stereocentres under mild conditions.  相似文献   

13.
The highly enantioselective alkynylation of isatins, catalyzed by a bifunctional guanidine/CuI catalyst under mild reaction conditions, is described. The reaction is broad in scope with respect to alkyl/aryl‐substituted terminal alkynes and substituted isatins, thus affording bioactive propargylic alcohols in excellent yields and enantioselectivities.  相似文献   

14.
The development of new catalytic asymmetric reactions continues to be a major goal in organic chemistry. Here we report a novel antibody-catalyzed intramolecular Michael addition of aldehydes and ketones to enones. The reaction is enantioselective and diastereoselective with a high ee value and cis/trans ratio. This is the first example of asymmetric intramolecular Michael addition of ketones. Antibody 38C2 is the only catalyst to date capable of generating this selectivity in Michael addition products.  相似文献   

15.
The titanium complex of the cis-1,2-diaminocyclohexane (cis-DACH) derived Berkessel-salalen ligand is a highly efficient and enantioselective catalyst for the asymmetric epoxidation of terminal olefins with hydrogen peroxide (“Berkessel-Katsuki catalyst”). We herein report that this epoxidation catalyst also effects the highly enantioselective hydroxylation of benzylic C−H bonds with hydrogen peroxide. Mechanism-based ligand optimization identified a novel nitro-salalen Ti-catalyst of the highest efficiency ever reported for asymmetric catalytic benzylic hydroxylation, with enantioselectivities of up to 98 % ee, while overoxidation to ketone is marginal. The novel nitro-salalen Ti-catalyst also shows enhanced epoxidation efficiency, as evidenced by e.g. the conversion of 1-decene to its epoxide in 90 % yield with 94 % ee, at a catalyst loading of 0.1 mol-% only.  相似文献   

16.
Kim JG  Camp EH  Walsh PJ 《Organic letters》2006,8(20):4413-4416
The first catalytic asymmetric methallylation of ketones is reported. The catalyst, which is generated from titanium tetraisopropoxide, H8-BINOL, 2-propanol, and tetramethallylstannane, reacts with ketones in acetonitrile to afford tertiary homoallylic alcohols in fair to excellent yields (55-99%) and fair to high enantioselectivities (46-90%). Ozonolysis of the resulting products provides access to chiral beta-hydroxy ketones, which are not readily prepared from direct asymmetric aldol reaction of acetone with ketones.  相似文献   

17.
Jianjun Li  Ping He  Chuanming Yu 《Tetrahedron》2012,68(22):4138-4144
With diphenylammonium triflate (DPAT) as a catalyst, the highly substituted pyridines and dihydropyridines were prepared under solvent-free conditions from aldehydes, ketones, and amines via a one-pot multi-component reaction. The advantages of this protocol include excellent yields, environmentally benign source of nitrogen, mild reaction conditions, and simple manipulation. Different source of nitrogen like urea, thiourea, inorganic ammonium salts, and organic amines were studied. In addition, a novel way was developed for the conversion of primary aliphatic amines into alcohols.  相似文献   

18.
A highly efficient enantioselective organozinc (R2Zn) addition to ketones catalyzed by chiral phosphoramide-Zn(II) complexes (1-10 mol %) has been developed. These complexes serve as conjugate Lewis acid-Lewis base catalysts. Chiral phosphoramides are derived from an inexpensive natural amino acid (i.e., L-valine). From a variety of nonactivated aromatic and aliphatic ketones, the corresponding optically active tertiary alcohols were obtained in high yields with high enantioselectivities (up to 98% ee) under the mild reaction conditions.  相似文献   

19.
手性酮是催化非官能化烯烃不对称环氧化的一类重要催化剂 ,它与过氧硫酸氢钾可原位产生对贫电子和富电子烯烃均很有效的氧化剂———手性二氧杂环丙烷 .综述了各种结构的手性酮在反式烯烃、三取代烯烃和顺式烯烃等的不对称环氧化反应中的应用研究进展 ,总结了手性酮结构及反应条件对其催化活性和不对称诱导作用的影响  相似文献   

20.
《Tetrahedron: Asymmetry》2005,16(20):3341-3344
The catalytic enantioselective addition of different organozinc reagents, such as alkyl, or in situ generated aryl, allyl, alkenyl and alkynyl derivatives to simple aryl ketones, was accomplished using titanium tetraisopropoxide and chiral ligands derived from 1-arenesulfonylamino-2-isoborneolsulfonylamidocyclohexane, giving the corresponding tertiary alcohols with enantioselectivities up to >99%. A simple and efficient procedure for the synthesis of the disulfonamide ligands used is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号