首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the polyamines putrescine (Put), spermine (Spr) and spermidine (Spd) on growth and furanocoumarin production was investigated by exogenous addition, at different concentrations, to shoot cultures of Ruta graveolens at different phases of growth. Preliminary studies indicated that addition of Put (20 microM) and Spr (80 microM) had a promotive effect on shoot multiplication rate and number of multiple shoots formed. Spd was toxic, even at lower concentrations. The growth-phase of the culture at the time of exogenous addition of polyamines was found to be an important factor. Put was most effective when added at the lag phase, while Spr was most effective when added in the log phase. Time course studies of growth and furanocoumarin content were carried out for each polyamine and phase of addition. It was seen that maximum production of furanocoumarins (256.8 mg/10 g DW) occurred in the second week when Put was added in the lag phase and 260.5 mg/10 g DW in the fourth week when Spr was added in the log phase. Put addition resulted in a 3.10 fold increase in psoralen, 6.12 in xanthotoxin and 1.46 fold in bergapten production. Spr addition resulted in a 1.31 fold increase in psoralen, 4.11 fold in xanthotoxin and 1.49 fold in bergapten production. Results indicate that alteration of growth and furanocoumarin production kinetics is a combined outcome of choice of polyamine and the phase of culture at the time of exogenous addition. Polyamine addition enabled significant enhancement in production of pharmaceutically important bergapten and xanthotoxin in shoot cultures of Ruta graveolens, which could be explored for commercial production.  相似文献   

2.
A temporary immersion bioreactor system was found to be suitable for mass shoot proliferation of Rhodiola crenulata. The shoot multiplication ratio and hyperhydration rate reached 46.8 and 35.4%, respectively, at a temporary immersion cycle of 3-min immersion every 300 min. Forced ventilation was employed in the temporary immersion bioreactor culture in order to decrease the hyperhydration rate, improve shoot quality and enhance the multiplication ratio. The highest multiplication ratio of 55.7 was obtained under a temporary immersion cycle of 3-min immersion every 180 min with the forced ventilation at an air flow rate of 40 l/h, and the hyperhydration rate was reduced to 26.1%. Forced ventilation also improved the subsequent elongation and rooting rate of these proliferated shoots, and the shoot cultures from the temporary immersion bioreactor formed complete plantlets when subcultured onto a rooting medium containing 5 μmol/l indole-3-acetic acid.  相似文献   

3.
The inflorescences as explants for rapid propagation in vitro remained unknown in Populus euphratica Olivier. Here, we reported that multiple shoots were initiation from calli of both male and female inflorescences. The optimum medium for shoot induction from male inflorescences was lactose sulfite medium containing 1.0?mg?L?1 6-benzylaminopurine (BA) and 0.5?mg?L?1 ??-naphthalene acetic acid (NAA) or Murashige and Skoog (MS) medium containing 0.5?mg?L?1 BA and 0.2?mg?L?1 NAA. The optimum medium of shoot induction from female inflorescence calli was the MS medium containing 0.5?mg?L?1 BA and 0.2?mg?L?1 NAA. Rooting of regenerated shoots was obtained on 1/2 MS medium supplemented with 0.5??1.0?mg?L?1 indole-3-butyric acid (IBA) and the highest frequency rooting was on medium containing 0.5?mg?L?1 IBA. No shoots were obtained on medium without BA and NAA. Peroxidase (POD) activity was measured by polyacrylamide gel electrophoresis during shoot induction and differentiation stages. The results showed that two bands of POD (2a and 2b) activity appeared lowest during the early 8?days at the dedifferentiation phase of leaves inducing calli, whereas POD 2a, 2b activity appeared to be increasing at the homeochronous dedifferentiation phase of inflorescence. Five most intensive bands, POD 1a, 1b, 1c, 2a, and ab, appeared in 8th and 28th days at the redifferentiation phase during shoot morphogenesis. These results demonstrated that the POD was involved in shoot morphogenesis from both leaf and inflorescence explants of Populus euphratica.  相似文献   

4.
Zhou Y  Li N  Choi FF  Qiao CF  Song JZ  Li SL  Liu X  Cai ZW  Fu PP  Lin G  Xu HX 《Analytica chimica acta》2010,681(1-2):33-40
A rapid, but sensitive and selective method for simultaneous screening and quantification of toxic pyrrolizidine alkaloids (PAs) by ultra performance liquid-chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS) on a tandem quadrupole mass spectrometer (TQ-MS) is described. This was accomplished by incorporating the precursor ion scan (PIS) acquisition and multiple reaction monitoring (MRM) acquisition in the same UPLC-MS/MS run. Notably, the developed PIS approach for detecting two pairs of characteristic product ions at m/z 120/138 or 168/150, allowed specific identification of toxic retronecine and otonecine types PAs. This PIS method is highly sensitive with over 10-fold sensitivity improvement upon previously published LC-MS method. Moreover, this new approach is suitable for high sample throughput and was applied to the screening and quantifying toxic PAs in 22 samples collected from seven Parasenecio species and four Senecio species. In addition, coupling the MRM with PIS approach generated quantitative results equivalent to those obtained by conventional MRM-only approach. This coupled MRM with PIS approach could provide both qualitative and quantitative results without the need of repetitive analyses.  相似文献   

5.
An efficient plant regeneration protocol was established for an endangered ethnomedicinal plant Desmodium gangeticum (Linn.) DC. Morphogenic calli were produced from 96 % of the cultures comprising the immature leaf explants on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (4.0 mg?l?1) in combination with 6-benzylaminopurine (BA; 0.8 mg?l?1). For callus regeneration, various concentrations of BA (1.0–5.0 mg?l?1) or thidiazuron (TDZ; 1.0–5.0 mg?l?1) alone or in combination with indole-3-acetic acid (IAA; 0.2–1.0 mg?l?1) were used. Highest response of shoot regeneration was observed on MS medium fortified with TDZ (4.0 mg?l?1) and IAA (0.5 mg?l?1) combination. Here, 100 % cultures responded with an average number of 22.3 shoots per gram calli. Inclusion of indole-3-butyric acid in half MS medium favored rooting of recovered shoots. Out of 45 rooted plants transferred to soil, 40 survived. Total DNA was extracted from the leaves of the acclimatized plants of D. gangeticum. Analysis of random amplified polymorphic DNA using 13 arbitrary decanucleotide primers showed the genetic homogeneity in all the ten plants regenerated from callus with parental plant, suggesting that shoot regeneration from callus could be used for the true-to-type multiplication of this plant.  相似文献   

6.
Abutilon indicum exploited for its immense value has been propagated successfully through multiple shoot induction and somatic embryogenesis. Direct regeneration (8.20?±?0.83 shoots) was achieved from nodal explants using 0.5 mg/l kinetin (Kn) in MS media. The basal callus from nodal explants turned embryogenic on subsequent introduction of 0.2 mg/l TDZ into the Kn-supplemented media, giving rise to somatic embryos. The embryogenic potential of calli expressed in terms of embryo-forming capacity (EFC) increased from 8.15 EFC to 20.95 EFC after plasmolysis. The phytochemical analysis (HPLC) for the presence of scopoletin and scoparone has revealed a unique accumulation pattern, with higher levels of scopoletin during the earlier stages and scoparone in the later stages of development. The embryogenic calli contained the highest amount of coumarins (99.20?±?0.97 and 61.03?±?0.47 μg/gFW, respectively) followed by regenerated plant (9.43?±?0.20 and 36.36?±?1.19 μg/gFW, respectively), obtained via somatic embryogenesis. Rapid multiplication of A. indicum equipped with two potent coumarins is important in order to meet the commercial demand for combat against dreadful diseases, thereby providing a new platform for plant-based drugs and their manufacture on a commercial scale.  相似文献   

7.
An effective protocol was developed for in vitro regeneration of the Cassia angustifolia via indirect organogenesis from petiole explants excised from 21-day-old axenic seedlings. Organogenic callus were induced on Murashige and Skoog (MS) medium supplemented with 5.0 μM 2,4-dichlorophenoxy acetic acid and 2.5 μM thidiazuron (TDZ). Adventitious shoot regeneration was achieved on MS medium supplemented with 5.0 μM TDZ as it induced 8.5 ± 0.98 shoots in 85% cultures. The number of shoots and shoot length was significantly enhanced when cultures were subcultured on auxin–cytokinin-containing medium. The highest number of shoots (12.5 ± 1.10) and shoot length (4.3 ± 0.20 cm) was recorded on MS medium supplemented with 5.0 μM TDZ and 1.5 μM indole-3-acetic acid. Regenerated shoots were rooted best on MS medium supplemented with 10.0 μM indole-3-butyric acid followed by their transfer to liquid MS filter paper bridge medium. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 70% survival rate. The plants showed normal morphological characteristics similar to the field grown plants.  相似文献   

8.
The effect of thidiazuron (TDZ) has been investigated in shoot multiplication for a simple, efficient, rapid, and commercially applicable regeneration protocol of an important medicinal plant, Vitex trifolia. Multiple shoots were induced in nodal explants obtained from a mature tree on Murashige and Skoog (MS) medium supplemented with TDZ in various concentrations (0.5, 1.0, 2.5, 5.0, 7.5, or 10.0???M). Prolonged exposure of the culture to TDZ had an adverse affect. To avoid this, the cultures were transferred to TDZ-free MS medium or MS medium fortified with various concentrations of 6-benzyladenine (BA) alone or in combination with ??-naphthalene acetic acid (NAA) to enhance multiplication, proliferation, and elongation of induced shoots. Optimum shoot multiplication and elongation was achieved when TDZ-exposed explants were repeatedly subcultured on MS media containing a combination of 1.0???M BA and 0.5???M NAA. The highest shoot regeneration frequency (90?%) and maximum number (22.3?±?0.2) of shoots per explant with shoot length of (5.2?±?0.2?cm) was recorded on MS medium fortified with 5.0???M TDZ. In vitro rooting of isolated shoots was achieved best in half-strength MS medium containing 0.5???M NAA. Properly rooted plantlets were successfully hardened off and acclimatized in thermocol cups containing sterile Soilrite. These plantlets were then transferred to pots containing different potting substrate; percentage survival of the plantlets was highest in vermiculite/garden soil mixture (1:1) and successfully transfer to greenhouse under sunlight.  相似文献   

9.
The sensitivity of the photosynthetic apparatus to ultraviolet-B (UV-B) irradiation was studied in cultures of unicellular green alga Scenedesmus obliquus incubated in low light (low photosynthetically active radiation intensity [LL]) and high light (high photosynthetically active radiation intensity [HL]) conditions, treated or not with exogenous polyamines. Biochemical and physicochemical measurements showed that UV-B radiation induces a decrease in the thylakoid-associated putrescine (Put) and an increase in spermine (Spm), so that the reduction of Put/Spm ratio leads to the increase of light-harvesting complex II (LHCII) size per active reaction center and, consequently, the amplification of UV-B effects on the photosynthetic apparatus. The separation of oligomeric and monomeric forms of LHCII from isolated thylakoids showed that UV-B induces an increase in the oligomeric forms of LHCII, which was more intense in LL than in HL. By manipulating the LHCII size with exogenous polyamines, the sensitivity degree of the photosynthetic apparatus to UV-B changed significantly. Specifically, the addition of Put decreased highly the sensitivity of LL culture to UV-B because of the inhibitory effect of Put on the LHCII size increasing, whereas the addition of Spm enhanced the UV-B injury induced in HL culture because of the increasing of LHCII size. The ability of the photosynthetic apparatus to recover the UV-B induced changes was also investigated.  相似文献   

10.
Multiple shoot cultures of two experimental lines of Withania somnifera plants (RS-Selection-1 and RS-Selection-2) were established using nodal segments as explants. The hormonal combinations of benzyl adenine and kinetin not only influenced their morphogenetic response but also differentially modulated the level of biogeneration of withanolide A in the in vitro shoots of the two lines. Interestingly, withanolide-A, that was hardly detectable in the aerial parts of field-grown Withania somnifera (explant source), accumulated considerably in the in vitro shoot cultures of the plant. The productivity of withanolide A in the cultures varied considerably (ca. 10-fold, 0.014 to 0.14 mg per gram fresh weight) with the change in the hormone composition of the culture media as well as genotype used as source of the explant. The shoot culture of RS-Selection-1 raised at 1.00 ppm of BAP and 0.50 ppm of kinetin displayed the highest concentration of withanolide A in the green shoots of 0.238 g per 100 g dry weight tissue. This was a more analytical concentration keeping in view the isolation yields so far reported from the dried roots of the field-grown plant (ca. 0.015 g per 100 g dry weight), even if isolation losses are considered during purification. The enhanced de novo biogenesis of withanolide A in shoot cultures was corroborated with radiolabel incorporation studies using [2-(14)C] acetate as a precursor. Production of withaferin A was also found in the in vitro shoot cultures. As this compound is a predominant withanolide of native shoots as well and has been already reported to be accumulated in in vitro shoot cultures, its biogeneration observed in these shoot cultures is not discussed in detail.  相似文献   

11.
Protoplasts isolated from immature cotyledons of cultivated soybean (Glycine max L.) were cultured by Gelrite bead method in ZSP medium with soybean root nodule products (asparagine, glutamine, allantoin, allantoic acid, etc.) as the main nitrogen resources. Embryogenic calli were initiated and transferred to somatic embryo differentiation medium. Somatic embryos were formed from embryogenic calli and converted to plants. The regenerated plants normally grew and flowered.  相似文献   

12.
An efficient regeneration system was established for an ethnomedicinal shrub Rhinacanthus nasutus from root-derived callus organogenesis. The root segments were cultured on MS medium supplemented with various concentrations of Kn (1.0–4.0 μM) alone or in combination with IBA (0.2–0.6 μM) or 2, 4-D (0.5–1.5 μM). The optimum frequency (94 %) of callus induction was recorded on MS medium supplemented with 3.0 μM Kn and 0.4 μM IBA. For shoot regeneration from callus, MS medium supplemented with different concentrations (1.0–7.0 μM) of BA or TDZ alone or in combination with NAA (0.2–1.0 μm) was employed. The highest frequency of shoot regeneration (91 %) and mean number of shoots (28.3) were observed on MS medium supplemented with 5.0 μM BA and 0.7 μM NAA. The shoots were excised and cultured on MS medium with 4.0 μM IBA produced 3.4 roots per shoot in 88 % cultures. Of the 65 plants transferred to soil 54 survived (83 %). The plants were transferred to field after successful hardening. RAPD analysis of the regenerated plants showed high similarity with the mother plant.  相似文献   

13.
Populus tomentosa is one special species of poplar growing in North China. Mesophyllprotoplasts were isolated from the axenic shoots and cultured in the modified KM8p liquidmedium. Protoplast-derived cells started to divide after 7 days of culture. The frequencyof cell division reached about 20% in 10 days. The yellowish green calli grew compact andnodular after the hormone concentration of medium was adjusted. Shoot formation occurredwhen the protoplast--derived calli were transferred onto MS medium containing zeatin andIAA or NAA. The shoots rooted readily on 1/2 MS hormone--free medium.  相似文献   

14.
Nicotiana tabacum morphogenetic callus was used to study the stimulative effects of external alternating electric currents of low level and low frequency on the cytodifferentiation processes. The N. tabacum calli were grown on standard medium for shoot regeneration and subjected to electric currents (50 Hz, 0.1–50 μA) during the whole period of treatment (30 days). The number of shoots, total mass, DNA and protein content were measured for each callus sample at the end of the experiment. The number of shoots increased by up to 300% for the samples stimulated with 50 μA although no significant changes were noted in total mass, DNA and protein content in the stimulated samples compared to control. We suggest that in the presence of the external electric current, the callus cells become more sensitive to chemical signals (hormones and/or ions) in the culture medium. A series of changes in the activity of membrane components, as a consequence of the modulation of membrane potential by the external electric field, could support our hypothesis.  相似文献   

15.
Callus cultures were established from immature leaf expiants ofArachis hypogaea on MS medium supplemented with 2.0 mg/L of NAA and 0.5 mg/L of BAP of the susceptible cultivars namely VRI-2 and TMV-7. Three-week-old calli were subjected to mutagenic treatments (gamma rays: 50–250 Gy and EMS: 5–25 mM). Mutagen-treated calli were subcultured to fresh medium containing various concentrations (25–100% v/v) of pathotoxic culture filtrates. Calli were challenged in vitro with pathotoxic culture filtrate of the fungal pathogen and were assessed by visible growth ratings expressed as the percent response to the doses/concentrations of mutagen. Selected mutagen-treated calli showed resistance in vitro on media containingCercosporidium personatum pathotoxic culture filtrate. Resistance calli were then transferred to MS regeneration medium supplemented with BAP (2.0 mg/L) and NAA (0.5 mg/L) for shoot bud regeneration. The progeny of the plants produced 13 disease-resistant plants (R2) in both the cultivars. Among the eight R2 populations studied, 70.2–82.5% of the plants exhibited enhanced resistance. This study suggested that groundnut plants with resistance to C.personatum can be selected  相似文献   

16.
A simple, repeatable and efficient protocol for direct multiple shoot regeneration from internodal explants has been defined in peppermint (Mentha x piperita var. Indus). In vitro regenerated shoots of peppermint were excised into 4 to 8 mm long internodes and cultured on Murashige and Skoog's medium supplemented with different cytokinins. In the hormonal assay, 3.0 mg L(-1) zeatin or 6-isopentenyl adenine independently supplemented to half strength MS medium exhibited multiple shoot regeneration, while thiaduzorn (0.1-3.0 mg L(-1)) showed no morphogenetic effect. A maximum of 85% in vitro cultured explants showed multiple shoot formation with an average of 7 shoots per explant on MS medium supplemented with zeatin. Multiple shoots were initiated within three weeks of cultivation. Internodes with regenerated multiple shoots were transferred to half- strength MS medium without supplementing with any plant growth hormone for shoot elongation and rhizogenesis. Rooted plants acclimatized and grew to maturity under glasshouse conditions. The plantlets developed were phenotypically identical to the parent plant and exhibited 96% survival.  相似文献   

17.
Biogenic polyamines (PAs) are involved in the growth and development of normal cells, and their intracellular concentration is stable. The concentration of PAs in cancer cells is significantly increased to promote and sustain their rapid proliferation. Over the years, synthetic PAs, which differ in their structure, have demonstrated high antitumor activity and are involved in clinical trials. The chemical synthesis of PAs and their conjugates require the correct choice of synthetic pathways—methods for constructing conjugates and the orthogonal protection of amino groups. The most common methods of synthesis of PA conjugates are acylation of regioselectively protected PAs or their alkylation under the conditions of the Fukuyama reaction. One of the most promising methods of PA synthesis is the use of a multicomponent Ugi reaction, which allows various PAs to be obtained in high yields. In this review, we describe and analyze various approaches that are used in the synthesis of polyamines and their conjugates.  相似文献   

18.
Protoplasts were isolated from embryogenic calli derived from immature embryos ofwheat (Triticum aestivum L. cv. Jinan 177). The protoplasts were cultured in NMB mediumsupplemented with 1mg/L 2,4- D and 500mg/l casein hydrolysate (CH). The regenerated cellsfrom protoplasts divided to form somatic embryos directly. The somatic embryos grown to1.5- 2 mm in size directly developed into complete plants on solid MB medium without hor-mones.  相似文献   

19.
An investigation was carried out to develop an efficient micropropagation protocol for Catharanthus roseus. Experiments were conducted to optimize suitable media for in vitro shoot multiplication and root induction. Out of the different media compared for in vitro shoot multiplication, Murashige and Skoog (MS) medium supplemented with 1 mg/l of 6-benzylaminopurine and 0.2 mg/l α-naphthaleneacetic acid showed better response in terms of the emergence of shoots from axillary buds as well as proliferation and multiplication of shoots. The shoots when placed on half strength of MS medium having 1 mg/l indole 3-butyric acid and 0.25 % charcoal showed cent percent root induction with maximum number of roots per shoot (4.2) as well as maximum root length (1.72 cm). Further, clonal fidelity of the in vitro-raised plants was carried out using randomly amplified polymorphic DNA marker and results indicated that all the tissue culture-derived plants are true-to-type and there were no somaclonal variations among these plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号