首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The linear multiplicative programming problem minimizes a product of two (positive) variables subject to linear inequality constraints. In this paper, we show NP-hardness of linear multiplicative programming problems and related problems.  相似文献   

2.
Multiplicative programming problems are difficult global optimization problems known to be NP-hard. At the same time, these problems have some important applications in engineering, finance, economics, and other fields. This article has two purposes. The first is to present an analysis that shows several relationships between concave multiplicative programs and concave minimization problems, and between concave multiplicative programs and certain multiple-objective mathematical programs. The second purpose is to propose and report computational results for a heuristic efficient-point search algorithm that we have designed for use on linear multiplicative programming problems. To our knowledge, this is the first heuristic algorithm of its type. The theoretical and algorithmic results given in the article offer some potentially important new avenues for analyzing and solving multiplicative programming problems of various types.  相似文献   

3.
焦红伟  陈永强 《应用数学》2008,21(2):270-276
本文对一类非凸规划问题(NP)给出一确定性全局优化算法.这类问题包括:在非凸的可行域上极小化有限个带指数的线性函数乘积的和与差,广义线性多乘积规划,多项式规划等.通过利用等价问题和线性化技巧提出的算法收敛到问题(NP)的全局极小.  相似文献   

4.
This article presents an outcome-space pure cutting-plane algorithm for globally solving the linear multiplicative programming problem. The framework of the algorithm is taken from a pure cutting-plane decision set-based method developed by Horst and Tuy for solving concave minimization problems. By adapting this method to an outcome-space reformulation of the linear multiplicative programming problem, rather than applying directly the method to the original decision-set formulation, it is expected that considerable computational savings can be obtained. Also, we show how additional computational benefits might be obtained by implementing the new algorithm appropriately. To illustrate the new algorithm, we apply it to the solution of a sample problem.  相似文献   

5.
An algorithm is proposed for globally minimizing a concave function over a compact convex set. This algorithm combines typical branch-and-bound elements like partitioning, bounding and deletion with suitably introduced cuts in such a way that the computationally most expensive subroutines of previous methods are avoided. In each step, essentially only few linear programming problems have to be solved. Some preliminary computational results are reported.Parts of the present paper were accomplished while the author was on leave at the University of Florida.Parts of the present paper were completed while the author was on leave at the University of Trier as a fellow of the Alexander von Humboldt foundation.  相似文献   

6.
高岳林  井霞 《计算数学》2013,35(1):89-98
提出了求解一类线性乘积规划问题的分支定界缩减方法, 并证明了算法的收敛性.在这个方法中, 利用两个变量乘积的凸包络技术, 给出了目标函数与约束函数中乘积的下界, 由此确定原问题的一个松弛凸规划, 从而找到原问题全局最优值的下界和可行解. 为了加快所提算法的收敛速度, 使用了超矩形的缩减策略. 数值结果表明所提出的算法是可行的.  相似文献   

7.
It is shown that parametric linear programming algorithms work efficiently for a class of nonconvex quadratic programming problems called generalized linear multiplicative programming problems, whose objective function is the sum of a linear function and a product of two linear functions. Also, it is shown that the global minimum of the sum of the two linear fractional functions over a polytope can be obtained by a similar algorithm. Our numerical experiments reveal that these problems can be solved in much the same computational time as that of solving associated linear programs. Furthermore, we will show that the same approach can be extended to a more general class of nonconvex quadratic programming problems.  相似文献   

8.
We are dealing with a numerical method for solving the problem of minimizing a difference of two convex functions (a d.c. function) over a closed convex set in n . This algorithm combines a new prismatic branch and bound technique with polyhedral outer approximation in such a way that only linear programming problems have to be solved.Parts of this research were accomplished while the third author was visiting the University of Trier, Germany, as a fellow of the Alexander von Humboldt foundation.  相似文献   

9.
A novel approach to Bilevel nonlinear programming   总被引:3,自引:3,他引:0  
Recently developed methods of monotonic optimization have been applied successfully for studying a wide class of nonconvex optimization problems, that includes, among others, generalized polynomial programming, generalized multiplicative and fractional programming, discrete programming, optimization over the efficient set, complementarity problems. In the present paper the monotonic approach is extended to the General Bilevel Programming GBP Problem. It is shown that (GBP) can be transformed into a monotonic optimization problem which can then be solved by “polyblock” approximation or, more efficiently, by a branch-reduce-and-bound method using monotonicity cuts. The method is particularly suitable for Bilevel Convex Programming and Bilevel Linear Programming.   相似文献   

10.
Multiplicative programming problems with exponent (MPE) have many practical applications in various fields. In this paper, a method for accelerating global optimization is proposed for a class of multiplicative programming problems with exponent under multiplicative constraints using a suitable deleting technique. This technique offers the possibility of cutting away a large part of the currently investigated region in which the globally optimal solution of the MPE does not exist. The deleting technique can accelerate the convergence of the proposed global optimization algorithm. Two numerical examples are given to illustrate the feasibility of the deleting technique.  相似文献   

11.
An algorithm for solving a linear multiplicative programming problem (referred to as LMP) is proposed. LMP minimizes the product of two linear functions subject to general linear constraints. The product of two linear functions is a typical non-convex function, so that it can have multiple local minima. It is shown, however, that LMP can be solved efficiently by the combination of the parametric simplex method and any standard convex minimization procedure. The computational results indicate that the amount of computation is not much different from that of solving linear programs of the same size. In addition, the method proposed for LMP can be extended to a convex multiplicative programming problem (CMP), which minimizes the product of two convex functions under convex constraints.  相似文献   

12.
In decision making problems, there may be the cases where the decision makers express their judgements by using preference relations with incomplete information. Then one of the key issues is how to estimate the missing preference values. In this paper, we introduce an incomplete interval multiplicative preference relation and give the definitions of consistent and acceptable incomplete ones, respectively. Based on the consistency property of interval multiplicative preference relations, a goal programming model is proposed to complement the acceptable incomplete one. A new algorithm of obtaining the priority vector from incomplete interval multiplicative preference relations is given. The goal programming model is further applied to group decision-making (GDM) where the experts evaluate their preferences as acceptable incomplete interval multiplicative preference relations. An interval weighted geometric averaging (IWGA) operator is proposed to aggregate individual preference relations into a social one. Furthermore, the social interval multiplicative preference relation owns acceptable consistency when every individual one is acceptably consistent. Two numerical examples are carried out to show the efficiency of the proposed goal programming model and the algorithms.  相似文献   

13.
A branch-and-reduce approach to global optimization   总被引:4,自引:0,他引:4  
This paper presents valid inequalities and range contraction techniques that can be used to reduce the size of the search space of global optimization problems. To demonstrate the algorithmic usefulness of these techniques, we incorporate them within the branch-and-bound framework. This results in a branch-and-reduce global optimization algorithm. A detailed discussion of the algorithm components and theoretical properties are provided. Specialized algorithms for polynomial and multiplicative programs are developed. Extensive computational results are presented for engineering design problems, standard global optimization test problems, univariate polynomial programs, linear multiplicative programs, mixed-integer nonlinear programs and concave quadratic programs. For the problems solved, the computer implementation of the proposed algorithm provides very accurate solutions in modest computational time.  相似文献   

14.
半定规划的近似中心投影法   总被引:2,自引:1,他引:2  
何炳生 《计算数学》1998,20(2):175-176
1.引言半定规划问题标准形的数学形式是这里C,AIEIR”””及变量XEIRn“”为对称矩阵,Tr(·)表示矩阵的迹,用符号>0和三0分别表示矩阵正定和半正定.由于半定规划在控制论,结构优化,组合优化方面有重要应用[1,3,16,17]以及线性规划内点法取得的巨大成就[7],将线性规划的内点法推广到半定规划上,是数学规划领域内近年来受到重视的一个研究课题.线性规划内点法中的势函数下降法[10,16]原始对偶中心路径跟踪法[2,4,8,9,11。15]已经先后被推广到半定规划上.ROOS-Visl近似中心法则是求解线性规划的另一类内…  相似文献   

15.
This paper is concerned with a practical algorithm for solving low rank linear multiplicative programming problems and low rank linear fractional programming problems. The former is the minimization of the sum of the product of two linear functions while the latter is the minimization of the sum of linear fractional functions over a polytope. Both of these problems are nonconvex minimization problems with a lot of practical applications. We will show that these problems can be solved in an efficient manner by adapting a branch and bound algorithm proposed by Androulakis–Maranas–Floudas for nonconvex problems containing products of two variables. Computational experiments show that this algorithm performs much better than other reported algorithms for these class of problems.  相似文献   

16.
Fundamental dynamic programming recursive equations are extended to the multicriteria framework. In particular, a more detailed procedure for a general recursive solution scheme for the multicriteria discrete mathematical programming problem is developed. Definitions of lower and upper bounds are offered for the multicriteria case and are incorporated into the recursive equations to aid problem solution by eliminating inefficient subpolicies. Computational results are reported for a set of 0–1 integer linear programming problems.This research was supported in part by CONACYT (Consejo Nacional de Ciencia y Technologia), Mexico City, Mexico.  相似文献   

17.
Chang [C.-T. Chang, Multi-choice goal programming, Omega, The Inter. J. Manage. Sci. 35 (2007) 389–396] has recently proposed a new method namely multi-choice goal programming (MCGP) for multi-objective decision problems. The multi-choice goal programming allows the decision maker to set multi-choice aspiration levels for each goal to avoid underestimation of the decision. However, to express the multi-choice aspiration levels, multiplicative terms of binary variables are involved in their model. This leads to difficult implementation and it is not easily understood by industrial participants. In this paper, we propose an alternative method to formulate the multi-choice aspiration levels with two contributions: (1) the alternative approach does not involve multiplicative terms of binary variables, this leads to more efficient use of MCGP and is easily understood by industrial participants, and (2) the alternative approach represents a linear form of MCGP which can easily be solved by common linear programming packages, not requiring the use of integer programming packages. In addition, a new concept of constrained MCGP is introduced for constructing the relationships between goals in this paper. Finally, to demonstrate the usefulness of the proposed method, an illustrate example is included.  相似文献   

18.
In this paper, by solving the relaxed quasiconcave programming problem in outcome space, a new global optimization algorithm for convex multiplicative programming is presented. Two kinds of techniques are employed to establish the algorithm. The first one is outer approximation technique which is applied to shrink relaxation area of quasiconcave programming problem and to compute appropriate feasible points and to raise the capacity of bounding. And the other one is branch and bound technique which is used to guarantee global optimization. Some numerical results are presented to demonstrate the effectiveness and feasibility of the proposed algorithm.  相似文献   

19.
针对一类多乘积规划问题(MP),给出一个加速算法.首先导出一个与(MP)等价的逆凸问题(RCP),然后构造问题(RCP)的线性松弛化问题.算法的主要特点是提出了两个加速技巧,这些技巧可以用于改善算法的收敛速度.数值算例表明算法是可行的.  相似文献   

20.
One of the most effective numerical techniques for solving nonlinear programming problems is the sequential quadratic programming approach. Many large nonlinear programming problems arise naturally in data fitting and when discretization techniques are applied to systems described by ordinary or partial differential equations. Problems of this type are characterized by matrices which are large and sparse. This paper describes a nonlinear programming algorithm which exploits the matrix sparsity produced by these applications. Numerical experience is reported for a collection of trajectory optimization problems with nonlinear equality and inequality constraints.The authors wish to acknowledge the insightful contributions of Dr. William Huffman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号