首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.  相似文献   

2.
退火温度对溅射铝膜结构与电性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
 采用直流磁控溅射方法成功地制备了Al膜,研究了退火温度对Al膜表面形貌、晶体结构、应力、择优取向及反射率的影响。研究表明:不同退火温度的薄膜晶粒排布致密而光滑,均方根粗糙度小。XRD测试表明:不同温度退火的铝膜均成多晶状态,晶体结构为面心立方,退火温度升高到400 ℃时,Al膜的应力最小达0.78 GPa,薄膜平均晶粒尺寸由18.3 nm增加到25.9 nm;随着退火温度的升高,(200)晶面择优取向特性变好。薄膜紫外-红外反射率随着退火温度的升高而增大。  相似文献   

3.
Behavior of metal nanoparticles in the electron beam   总被引:1,自引:0,他引:1  
Fabrication and structural observation of In, Pd and Mo nanoparticles deposited on Si(110) substrates were performed in an ultrahigh vacuum field emission transmission electron microscope. In situ and/or dynamic observation of In nanoparticles showed fluctuation of their structures. The smaller particles of size of 3-5 nm showed frequent fluctuation, while the nanoparticles of more than 10 nm in size showed relatively slower fluctuation. The bigger nanoparticles showed coalescence with a weaker beam. Pd nanoparticles of size of 3-5 nm showed structural fluctuation after 10-30 s of electron beam irradiation. Stronger beam irradiation resulted in the dissipation of the nanoparticles probably due to diffusion. Mo nanoparticles of size of 3-5 nm never showed structural fluctuation. Intensive electron beam irradiation resulted in the dissipation of the particles. The difference in structural fluctuation depending on the metal and the beam intensity, and the peculiar coalescence of In nanoparticles are discussed qualitatively.  相似文献   

4.
A. Berk    F. Solymosi 《Surface science》1998,400(1-3):281-289
A method for independent control of the particle size and distance is presented for rhodium epitaxy on TiO2(110)-(1×2) surface. The real space imaging of the surface morphology was performed by scanning tunneling microscopy. The amount of the deposited rhodium was checked by Auger electron spectrometry. The method consists of two steps: (i) evaporation of 0.001–0.050 ML equivalent of rhodium at room temperature with a post-annealing at 1100 K (“seeding”); (ii) post-deposition of rhodium for growing of the Rh nanoparticles formed in step (i) (“growing”). The mechanism of this procedure is based on the large difference of the surface diffusion coefficient between Rh adatoms and Rh nanocrystallites larger than 1–2 nm. In the first step the average distance between the metal particles is controlled in the range 5–200 nm, the second step determines the particles size (2–50 nm). This work demonstrates that the diffusion processes of metal nanoparticles of different sizes and the growing modes of the crystallites can be studied in detail by application of seeded surfaces.  相似文献   

5.
汤富领  陈功宝  谢勇  路文江 《物理学报》2011,60(6):66801-066801
应用分子动力学方法,采用嵌入势模型在熔点下和熔点上对Al(001),(110)和(111)表面的原子结构和自扩散现象进行研究.发现这些表面的第一层原子在低于熔点时,Al(110)面在700±10 K,Al(001)面在 860±10 K,Al(111)面在 930±10 K呈现明显自扩散且最终转变为"类液"结构,而其余各层仍保留有序状态.对这种"类液"结构进行均方位移、结构有序参数、径向分布函数和z向粒子密度分析,发现其结构和扩散行为与熔化的Al表面不同,并能在一定温度区间稳定存在.在"类液 关键词: 表面结构 分子动力学 自扩散  相似文献   

6.
采用自悬浮定向流法制备出Ag2Al复合金属间化合物的纳米微粉,通过透射电子显微镜、X射线衍射仪和X射线能谱仪对纳米微粉的显微结构、粒度、相组成和成分构成进行研究。结果表明:所制备出的复合金属间化合物纳米颗粒呈规则球形,粒径分布在20~110 nm之间;纳米合金颗粒的主要组成相为Ag2Al,并伴有少量的Al;样品中的Ag,Al原子数比约为66.5∶33.5,金属间化合物纳米颗粒中Ag2Al晶粒尺寸约为33 nm,Al的约为21 nm。  相似文献   

7.
The effect of intermetallic nanoparticles like Ni3Al and nanoparticles of an Fe-rich bcc phase on the evolution of vacancy defects in an fcc Fe–34.2 wt% Ni–5.4 wt% Al model alloy under electron irradiation at elevated temperatures (423 and 573 K) was investigated using positron annihilation spectroscopy. Nanosized (1–8 nm) particles, which are homogeneously distributed in the alloy matrix, cause a several-fold decrease in the accumulation of vacancies as compared to their accumulation in a quenched alloy. This effect depends on the size and the type of nanoparticles. The effect of the nanoparticles increases when the irradiation temperature increases. The irradiation-induced nucleation and the growth of intermetallic nanoparticles were also observed in an alloy pre-aged at 1023 K under irradiation at 573 K. Thus, a quantum-dot-like positron state within ultrafine intermetallic particles, which we revealed earlier, allows control of the evolution of coherent precipitates like Ni3Al, along with vacancy defects, during irradiation and subsequent annealing. Possible mechanisms of the absorption of point defects by nanoparticles are discussed.  相似文献   

8.
Electron microscopy is used to study changes in the dislocation structure of high-purity rolled (001)[110] tungsten single crystals during short-term high-temperature annealings. The effects of the annealing temperature and time on the formation of low-angle boundaries are investigated. Local defects, which are similar to those detected earlier upon annealing in the structure of molybdenum single-crystal ribbons, are found to form and dissociate upon annealing. These defects are concluded to have a dislocation nature.  相似文献   

9.
对注入Ar+后不同晶面取向的蓝宝石晶体在不同退火条件下的光致发光谱进行了分析.分析结果表明:三种晶面取向的蓝宝石样品经Ar+注入后,其光致发光谱中均出现了新的位于506nm处的发光峰;真空和空气气氛下的退火均对样品在506nm处的发光有增强作用,不同晶面取向的样品发光增强程度不同,且发光增强至最大时的退火温度也不同,空气气氛下的退火使样品发光增强程度更为显著.由此可以看出,退火气氛、退火温度和晶面取向均对样品发光峰强度有影响. 关键词: 2O3')" href="#">Al2O3 离子注入 退火 光致发光谱  相似文献   

10.
本文研究了含硅3.25%铁硅合金(110)[001]的单晶,在压下量为5—50%范围内的形变和再结晶。沿样品轴向冷轧2—16%后,测出的滑移面为(101),(101),(011)和(011),孿生面为(112)和(112),这很好地解释了本文所得冷轧机构的来源。样品经过35%和50%冷轧后,在退火时再结晶晶粒形成的部位和生长的情况有所不同:前者在孿晶界上领先形成,并沿孿晶界择尤生长;而后者除了观察到在孿晶界和形变带附近形成外,还观察到一种通过亚晶粒长大而成的晶粒,它们择尤生长的趋势也不如前者明显。  相似文献   

11.
ZnS:Cr (3 at.%) nanoparticles were synthesized by chemical co-precipitation method using EDTA as capping agent. The samples were annealed in air for 3 h in steps of 100 °C in the temperature range of 200–700 °C. The effect of annealing temperatures on the structural and photoluminescence properties of Cr doped ZnS nanoparticles was investigated using X-ray Diffraction (XRD), a Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDS), Diffuse Reflectance Spectra (DRS), Vibrating Sample Magnetometer (VSM) and Photoluminescence (PL) techniques. EDS spectra confirmed the presence of Cr in the samples with expected stoichiometry. XRD studies confirmed the formation of ZnO above 500 °C. Photoluminescence studies on ZnS:Cr nanoparticles indicated that the emission wavelength is tunable in the range of 440–675 nm as a function of annealing temperature. VSM results indicated a decrease in ferromagnetism with increase in annealing temperature, perhaps due to appreciable variation in structural defects that are sensitive to annealing temperature.  相似文献   

12.
Processes of the formation of the double distribution of CuCl nanoparticles in glass in two-stage annealing have been analyzed. The distribution of CuCl nanoparticles with the average radius R 1 = 14 and 18 nm appears in 20 and 40 min at temperature T 1 = 700°C in samples 1 and 2, respectively. By this time, the formation of new clusters ends, and only the growth of previously formed clusters occurs (the second stage of nucleation). Then, the formation of the CuCl phase continues at T 2 = 500°C. A decrease in the temperature is accompanied by a decrease in the critical radius of particles of a new phase. For this reason, the formation and growth of new CuCl nuclei begin again and the second distribution with a mean radius of 1 nm or larger is formed. As a result, double distributions of CuCl nanoparticles with significantly different mean radii are formed in samples 1 and 2. The concentration and mean radius of CuCl particles in distributions have been determined from the optical absorption spectra of CuCl nanocrystals at 80 K in the wavelength range of 300–500 nm.  相似文献   

13.
CdS quantum dots of different average sizes in the range 2 to 3.8 nm were grown by diffusion-limited growth process in indigenously made silicate glass. The absorption spectra showed a strong quantum confinement effect with a blue shift of the order of ~500 meV depending on the average size. Critical radius of quantum dots was found to be 1.8 nm. The size dispersion decreased from 15.2 to 12.5% with a 20% increase in the particle size. The activation energy for diffusion was found to be very low i.e. 193 kJ mol−1 and the diffusion coefficient increased by 60% for 10 K rise in temperature. The PL emission spectra showed the presence of only deep traps around ~600 nm with a red shift of 200 nm. No shallow traps or band edge emission was observed. The PL peak position changed from 560 to 640 nm with a 35 K increase in annealing temperature.  相似文献   

14.
In the past few years ferromagnetic-like behavior has been reported in metal gold nanoparticles coated with diverse organic surfactants. In this work we report on the effect of thermal annealing on the ferromagnetic-like behavior of oleic acid and oleylamine coated gold nanoparticles of about 7 nm size. The magnetic moment of the “as prepared” sample is about 3×10−2 emu/g and the coercive field is 200 Oe at 10 kOe and 5 K, after the annealing the behavior changes from ferromagnetic-like to paramagnetic and the magnetization at 10 kOe decreases at a factor of 10. These results are compared with those obtained for oleylamine coated gold nanoparticles, which are diamagnetic at room temperature.  相似文献   

15.
采用反胶束法合成镱铥共掺杂的氟化镧纳米粒子.这种反胶束是由微乳液作为合成媒介,这些分散的纳米粒子在化学成分、尺寸分布上是可控的.产物形貌经场发射扫描电镜和透射电镜表征.固态样品分散在乙醇中,在未经超声处理时,样品表现为玉米棒样的聚集.棒的平均直径和长度分别为110,575nm.我们认为这种大量纳米粒子聚集成良好超结构是由于溶剂挥发,分子交叉链接或者表面活性剂分子附着于纳米粒子特殊晶面造成的.当样品经过超声处理后,由于超声振动破坏了上述因素,玉米棒形貌的聚集体转为大量纳米粒子.单个粒子的高分辨电镜显示出该纳米粒子的单晶结构.并且晶面间距约为0.366nm,与纯氟化镧六角相[002]晶面相一致.样品在300℃退火30min后的透射电镜照片显示纳米粒子的平均直径大约为35nm,这与XRD结果相吻合.并且,这些纳米粒子表现出了良好的单分散性,并且在978nm二极管激发下,纳米粒子呈现出亮蓝色上转换发光,这种上转换荧光粉在光电子或生物检测中有潜在的应用前景.  相似文献   

16.
Diffusion length of Ga on the GaAs(0 0 1)-(2×4)β2 is investigated by a newly developed Monte Carlo-based computational method. The new computational method incorporates chemical potential of Ga in the vapor phase and Ga migration potential on the reconstructed surface obtained by ab initio calculations; therefore we can investigate the adsorption, diffusion and desorption kinetics of adsorbate atoms on the surface. The calculated results imply that Ga diffusion length before desorption decreases exponentially with temperature because Ga surface lifetime decreases exponentially. Furthermore, Ga diffusion length L along and [1 1 0] on the GaAs(0 0 1)-(2×4)β2 are estimated to be and L[110]200 nm, respectively, at the incorporation–desorption transition temperature (T860 K).  相似文献   

17.
The solid-state reaction in Pt(15 nm)/Fe(15 nm) and Pt(15 nm)/Ag(10 nm)/Fe(15 nm) thin films after post-annealing at 593 K and 613 K for different annealing times has been studied. The structural properties of these samples were investigated by various methods including depth profiling with secondary neutral mass spectrometry, transmission electron microscopy, and X-ray diffraction. It is shown that after annealing at the above temperatures where the bulk diffusion processes are still frozen, homogeneous reaction layers of FePt and FePt with about 10 at.% Ag, respectively, have been formed. Corresponding depth profiles of the element concentrations revealed strong evidence that the formation mechanism is based on a grain boundary diffusion induced solid-state reaction in which the reaction interfaces sweep perpendicularly to the original grain boundary. Interestingly, X-ray diffraction indicated that in both thin-film systems after the solid-state reaction the ordered L10 FePt phase, which is the requested phase for future magnetic data storage applications, is also present.  相似文献   

18.
The size dependency of the cohesive energy of nanocrystals is obtained in terms of their averaged structural and energetic properties, which are in direct proportion with their cohesive energies. The significance of the effect of the geometrical shape of nanoparticles on their thermal stability has been discussed. The model has been found to have good prediction for the case of Cu and Al nanoparticles, with sizes in the ranges of 1–22 nm and 2–22 nm, respectively. Defining a new parameter, named as the surface-to-volume energy-contribution ratio, the relative thermal stabilities of different nanoclusters and their different surface-crystalline faces are discussed and compared to the molecular dynamic (MD) simulation results of copper nanoclusters. Finally, based on the size dependency of the cohesive energy, a formula for the size-dependent diffusion coefficient has been presented which includes the structural and energetic effects. Using this formula, the faster-than-expected interdiffusion/alloying of Au(core)–Ag(shell) nanoparticles with the core–shell structure, the Au-core diameter of 20 nm and the Ag-shell thickness of 2.91 nm, has been discussed and the calculated diffusion coefficient has been found to be consistent with its corresponding experimental value.  相似文献   

19.
This paper describes the second part of a study devoted to the growth of thin Ni-Al alloys after deposition of Al on Ni(1 1 1). In the previous paper [S. Le Pévédic, D. Schmaus, C. Cohen, Surf. Sci. 600 (2006) 565] we have described the results obtained for ultra-thin Al deposits, leading, after annealing at 750 K, to an epitaxial layer of Ni3Al(1 1 1). In the present paper we show that this regime is only observed for Al deposits smaller than 8 × 1015 Al/cm2 and we describe the results obtained for Al deposits exceeding this critical thickness, up to 200 × 1015 Al/cm2. Al deposition was performed at low temperature (around 130 K) and the alloying process was followed in situ during subsequent annealing, by Auger electron spectroscopy, low energy electron diffraction and ion beam analysis-channeling measurements, in an ultra-high vacuum chamber connected to a Van de Graaff accelerator. We evidence the formation, after annealing at 750 K, of a crystallographically and chemically well-ordered NiAl(1 1 0) layer (whose thickness depends on the deposited Al amount), over a Ni3Al “interfacial” layer (whose thickness—about 18 (1 1 1) planes—is independent of the deposited Al amount). The NiAl overlayer is composed of three variants, at 120° from each other in the surface plane, in relation with the respective symmetries of NiAl(1 1 0) and Ni3Al(1 1 1). The NiAl layer is relaxed (the lattice parameters of cc-B2 NiAl and fcc-L12 Ni3Al differ markedly), and we have determined its epitaxial relationship. In the case of the thickest alloyed layer formed the results concerning the structure of the NiAl layer have been confirmed and refined by ex situ X-ray diffraction and information on its grain size has been obtained by ex situ Atomic Force Microscopy. The kinetics of the alloying process is complex. It corresponds to an heterogeneous growth leading, above the thin Ni3Al interfacial layer, to a mixture of Al and NiAl over the whole Al film, up to the surface. The atomic diffusion is very limited in the NiAl phase that forms, and thus the progressive enrichment in Ni of the Al film, i.e. of the mean Ni concentration, becomes slower and slower. As a consequence, alloying is observed to take place in a very broad temperature range between 300 K and 700 K. For annealing temperatures above 800 K, the alloyed layer is decomposed, Al atoms diffusing in the bulk of the substrate.  相似文献   

20.
Extended regions located at an angle of 20° to the rolling plane are observed inside deformation bands in a (110)[001] Fe-3%Si alloy single crystal at a high strain (~60%). These regions were interpreted earlier as shear bands. The lattice orientation in these bands is close to (110)[001], and their habit plane is parallel to the {112} planes of the deformed {111}〈112〉 matrix. The misorientations between the bands and the matrix group around special misorientations Σ9, Σ19a, Σ27a, and Σ33a, which are characterized by close angles of rotation about axis 〈110〉. During primary recrystallization, the (110)[001] grains growing from the bands retain segments of the corresponding special boundaries with the deformed matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号