共查询到20条相似文献,搜索用时 46 毫秒
1.
Krivdin LB Khutsishvili SS Shemyakina OA Mal'kina AG Trofimov BA Contreras RH 《Magnetic resonance in chemistry : MRC》2007,45(9):758-765
Configurational assignment and conformational analysis of a series of iminodihydrofurans obtained from cyanoacetylenic alcohols were performed on the basis of experimental measurements and high-level ab initio calculations of their (13)C-(13)C spin-spin coupling constants. The title compounds were shown to form and exist in solution as the individual Z isomers, adopting the orthogonal orientation of the amino, alkylamino and dialkylamino groups and the s-trans orientation of the CONH(2) group at the C(4) position of the 2,5-dihydro-2-iminofuran moiety. 相似文献
2.
Krivdin LB Chernyshev KA Rosentsveig GN Ushakova IV Rosentsveig IB Levkovskaya GG 《Magnetic resonance in chemistry : MRC》2007,45(11):980-984
Configurational assignment of seven synthesized N-arylsulfonylimines of alpha-polychloroaldehydes has been carried out by means of experimental measurements and high-level ab initio calculations of their (13)C--(13)C, (13)C--(1)H and (15)N--(1)H spin-spin coupling constants. The title compounds were shown to exist in solution solely in the form of E isomers, in line with thermodynamic reasoning. 相似文献
3.
Krivdin LB Larina LI Chernyshev KA Rulev AY 《Magnetic resonance in chemistry : MRC》2006,44(2):178-187
Configurational assignment of seven azomethines obtained from the alpha-functionally substituted and nonsubstituted alpha,beta-unsaturated aldehydes has been performed on the basis of experimental measurements and the high-level ab initio calculations of their 1J(C,C) and 1J(C,H), involving the alpha-imino carbon that demonstrated the marked stereochemical dependence of both coupling constants upon the orientation of the nitrogen lone pair in the diverse isomers of the title azomethines. 相似文献
4.
Krivdin LB Larina LI Chernyshev KA Rozentsveig IB 《Magnetic resonance in chemistry : MRC》2005,43(11):937-942
Carbon-carbon coupling constants have been experimentally measured using the INADEQUATE pulse sequence in the series of N-[1,2-bis(dialkylamino)-2-arylethylidene]arylsulfonamides obtained from N-(1-aryl-2,2,2-trichloroethyl)amides of arylsulfonic acids. Comparison of the experimental J(C,C) in this series with those calculated at the SOPPA (Second-Order Polarization Propagator Approach) level in the model aminosulfonylamidine provided an unambiguous assignment at the C=N bond of the eight-title aminosulfonylamidines to E-configuration, while the unknown J(C,C) couplings in their inaccessible diverse Z isomers have been predicted with high reliability. The established marked difference between J(C,C) of the corresponding carbon-carbon bonds in cis and trans orientations to the nitrogen lone pair in aminosulfonylamidines provides a powerful tool in the configurational assignment at the C=N bond in a wide series of the related systems containing the C=N-SO2R moiety. 相似文献
5.
Rusakov YY Krivdin LB Schmidt EY Mikhaleva AI Trofimov BA 《Magnetic resonance in chemistry : MRC》2006,44(7):692-697
Conformational study of 2-(2-pyrrolyl)pyridine and 2,6-di(2-pyrrolyl)pyridine was performed on the basis of the experimental measurements and high-level ab initio calculations of the one-bond 13C-13C, 13C-1H and 15N-1H spin-spin coupling constants showing marked stereochemical behavior upon the internal rotation around the pyrrole-pyridine interheterocyclic bonds. Both compounds were established to adopt predominant s-cis conformations with no noticeable out-of-plane deviations. 相似文献
6.
《Magnetic resonance in chemistry : MRC》2003,41(2):123-130
The measurement of the magnitude and sign of 2J(C,H) couplings offers a reliable way to determine the absolute configuration at a carbon center in a fixed cyclic system. A decrease of the dihedral angle ? in the O—CA—CB—H fragment always leads to a change of the 2J(CA,HB) coupling to more negative values, independent of the type and position of substituents at the two carbon centers. The orientations of the two substituents at C‐3 of the epimeric pair 1 and 2 were determined unambiguously through the measurement of the geminal coupling constants between C‐3 and the hydrogen atoms at C‐2 and C‐4. In particular, 2J(C‐3,H‐2ax) with ?1.5 Hz, ? = 174° in 1 and ?6.6 Hz, ? = 47° in 2 , and 2J(C‐3,H‐4) with +1.5 Hz, ? = 175° in 1 and ?4.7 Hz, ? = 49° in 2 showed the greatest differences between the two epimers. Both couplings therefore allow the determination of the absolute configuration at C‐3. It should be noted, however, that the size of the coupling constants can be different for dihedral angles of nearly identical size, when there are different numbers of electronegative substituents on the two coupling pathways, i.e. no O‐substituent at C‐2, but one axial O‐substituent at C‐4. It becomes clear that it is not sufficient to measure the magnitude of 2J coupling constants only, but that the sign of the geminal coupling is needed to identify the absolute configuration at a chiral center. The coupling of C‐3 with H‐2eq is not useful for the determination of the configuration at C‐3, as the similarity of the dihedral angles ? (O—C‐3—C‐2—H‐2eq) (57° in 1 and 70° in 2 ) leads to identical coupling constants (?6.1 Hz) for both epimers. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
7.
Ab initio equation-of-motion coupled cluster calculations have been carried out to evaluate one-, two-, and three-bond 13C-13C, 15N-13C, 31P-13C coupling constants in benzene, pyridine, pyridinium, phosphinine, and phosphininium. The introduction of N or P heteroatoms into the aromatic ring not only changes the magnitudes of the corresponding X-C coupling constants (J, for X = C, N, or P) but also the signs and magnitudes of corresponding reduced coupling constants (K). Protonation of the heteroatoms also produces dramatic changes in coupling constants and, by removing the lone pair of electrons from the sigma-electron framework, leads to the same signs for corresponding reduced coupling constants for benzene, pyridinium, and phosphininium. C-C coupling constants are rather insensitive to the presence of the heteroatoms and protonation. All terms that contribute to the total coupling constant (except for the diamagnetic spin-orbit (DSO) term) must be computed if good agreement with experimental data is to be obtained. 相似文献
8.
Carbon-carbon and carbon-hydrogen spin-spin coupling constants were calculated in the series of the first six monocycloalkanes using SOPPA and SOPPA(CCSD) methods, and very good agreement with the available experimental data was achieved, with the latter method showing slightly better results in most cases, at least in those involving calculations of J(C,C). Benchmark calculations of all possible 21 coupling constants J(C,C), J(C,H) and J(H,H) in chair cyclohexane revealed the importance of using the appropriate level of theory and adequate quality of the basis sets. Many unknown couplings in this series were predicted with high confidence and several interesting structural trends (hybridization effects, multipath coupling transmission mechanisms, hyperconjugative interactions) were elucidated and are discussed based on the present calculations of spin-spin couplings. 相似文献
9.
Sýkora J Blechta V Soukupová L Schraml J 《Magnetic resonance in chemistry : MRC》2008,46(12):1112-1118
(29)Si-(13)C spin-spin couplings over one, two, and three bonds as well as other NMR parameters [delta((29)Si), delta((13)C), delta((1)H), (1)J((13)C-(1)H), and (2)J((29)Si-C-(1)H)] were calculated and measured for a series of trimethylsilylated alcohols of the types Me(3)Si-O-(CH(2))(n)CH(3) and Me(3)Si-O-CH(3-n)R(n)(n = 0-3; R = Me, Ph, or Vi). The signs of the coupling constants determined for selected compounds can likely be extended to all such compounds, as supported by theoretical calculations. Similar to couplings between other pairs of nuclei, the 2-bond and 3-bond (29)Si-O-(13)C couplings are of opposite signs ((2)J > 0 and (3)J < 0), and their relative magnitudes depend on the extent of branching at the alpha-carbon. 相似文献
10.
Irina L. Rusakova Yury Yu. Rusakov Leonid B. Krivdin 《Magnetic resonance in chemistry : MRC》2014,52(8):413-421
The computational study of the one‐bond 29Si–13C spin–spin coupling constants has been performed at the second‐order polarization propagator approximation (SOPPA) level in the series of 60 diverse silanes with a special focus on the main factors affecting the accuracy of the calculation including the level of theory, the quality of the basis set, and the contribution of solvent and relativistic effects. Among three SOPPA‐based methods, SOPPA(MP2), SOPPA(CC2), and SOPPA(CCSD), the best result was achieved with SOPPA(CCSD) when used in combination with Sauer's basis set aug‐cc‐pVTZ‐J characterized by the mean absolute error of calculated coupling constants against the experiment of ca 2 Hz in the range of ca 200 Hz. The SOPPA(CCSD)/aug‐cc‐pVTZ‐J method is recommended as the most accurate and effective computational scheme for the calculation of 1J(Si,C). The slightly less accurate but essentially more economical SOPPA(MP2)/aug‐cc‐pVTZ‐J and/or SOPPA(CC2)/aug‐cc‐pVTZ‐J methods are recommended for larger molecular systems. It was shown that solvent and relativistic corrections do not play a major role in the computation of the total values of 1J(Si,C); however, taking them into account noticeably improves agreement with the experiment. The rovibrational corrections are estimated to be of about 1 Hz or 1–1.5% of the total value of 1J(Si,C). Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
Irina L. Rusakova Yury Yu. Rusakov Leonid B. Krivdin 《Magnetic resonance in chemistry : MRC》2014,52(9):500-510
One‐bond spin–spin coupling constants involving selenium of seven different types, 1 J(Se,X), X = 1H, 13C, 15 N, 19 F, 29Si, 31P, and 77Se, were calculated in the series of 14 representative compounds at the SOPPA(CCSD) level taking into account relativistic corrections evaluated both at the RPA and DFT levels of theory in comparison with experiment. Relativistic corrections were found to play a major role in the calculation of 1 J(Se,X) reaching as much as almost 170% of the total value of 1 J(Se,Se) and up to 60–70% for the rest of 1 J(Se,X). Scalar relativistic effects (Darwin and mass‐velocity corrections) by far dominate over spin–orbit coupling in the total relativistic effects for all 1 J(Se,X). Taking into account relativistic corrections at both random phase approximation and density functional theory levels essentially improves the agreement of theoretical results with experiment. The most ‘relativistic’ 1 J(Se,Se) demonstrates a marked Karplus‐type dihedral angle dependence with respect to the mutual orientation of the selenium lone pairs providing a powerful tool for stereochemical analysis of selenoorganic compounds. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
12.
Seventy-three unique spin-spin coupling constants have been analyzed for the ten species in the two series X(CH3)nH(4-n), where the central atom X is 13C or 15N+. Thirty-seven experimental values have been obtained from the literature, and several new coupling constants have been measured for the methyl-substituted ammonium ions. Both DFT with the B3LYP functional and ab initio EOM-CCSD calculations have been carried out on these same systems. Coupling constants computed by these two methods are in agreement with experimental values. Some problems related to coupling constants for the cationic ammonium systems have been resolved when these were recomputed at EOM-CCSD for complexes in which NH4+ is hydrogen-bonded to H2O molecules. 相似文献
13.
《International journal of quantum chemistry》2018,118(15)
The influence of the hydrogen bond formation on the NMR spin–spin coupling constants (SSCC), including the Fermi contact (FC), the diamagnetic spin‐orbit, the paramagnetic spin‐orbit, and the spin dipole term, has been investigated systematically for the homogeneous glycine cluster, in gas phase, containing up to three monomers. The one‐bond and two‐bond SSCCs for several intramolecular (through covalent bond) and intermolecular (across the hydrogen‐bond) atomic pairs are calculated employing the density functional theory with B3LYP and KT3 functionals and different types of extended basis sets. The ab initio SOPPA(CCSD) is used as benchmark for the SSCCs of the glycine monomer. The hydrogen bonding is found to cause significant variations in the one‐bond SSCCs, mostly due to contribution from electronic interactions. However, the nature of variation depends on the type of oxygen atom (proton‐acceptor or proton‐donor) present in the interaction. Two‐bond intermolecular coupling constants vary more than the corresponding one‐bond constants when the size of the cluster increases. Among the four Ramsey terms that constitute the total SSCC, the FC term is the most dominant contributor followed by the paramagnetic spin‐orbit term in all one‐bond interaction. 相似文献
14.
Rusakov YY Krivdin LB Istomina NV Potapov VA Amosova SV 《Magnetic resonance in chemistry : MRC》2008,46(10):979-985
Theoretical energy-based conformational analysis of divinyl selenide performed at the MP2/6-311G** level is substantiated by the second-order polarization propagator approach (SOPPA) calculations and experimental measurements of its (77)Se-(1)H spin-spin coupling constants, demonstrating marked stereochemical behavior in respect of the internal rotation of both vinyl groups around the Se-C bonds. Based on these data, divinyl selenide is shown to exist in an equilibrium mixture of three nonplanar conformers: one the preferred syn-s-cis-s-trans and two minor anti-s-trans-s-trans and syn-s-trans-s-trans forms. 相似文献
15.
Andrei V. Afonin Dmitry V. Pavlov Igor A. Ushakov Elena Yu. Schmidt Al'bina I. Mikhaleva 《Magnetic resonance in chemistry : MRC》2009,47(10):879-884
In the 1H and 13C NMR spectra of 1‐(2‐selenophenyl)‐1‐alkanone oximes, the 1H, the 13C‐3 and 13C‐5 signals of the selenophene ring are shifted by 0.1–0.4, 2.5–3.0 and 5.5–6.0 ppm, respectively, to higher frequencies, whereas those of the 13C‐1, 13C‐2 and 13C‐4 carbons are shifted by 4–5, ~11 and ~1.7 ppm to lower frequencies on going from the E to Z isomer. The 15N chemical shift of the oximic nitrogen is larger by 13–16 ppm in the E isomer relative to the Z isomer. An extraordinarily large difference (above 90 ppm) between the 77Se resonance positions is revealed in the studied oxime isomers, the 77Se peak being shifted to higher frequencies in the Z isomer. The trends in the changes of the measured chemical shifts are well reproduced by the GIAO calculations of the 1H, 13C, 15N and 77Se shielding constants in the energy‐favorable conformation with the syn orientation of the? C?N? O? H group relative to the selenophene ring. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
Rusakov YY Krivdin LB Potapov VA Penzik MV Amosova SV 《Magnetic resonance in chemistry : MRC》2011,49(7):389-398
A combined theoretical and experimental study on the stereochemical behavior of (77)Se-(1)H spin-spin coupling constants has been performed at the second-order polarization propagator approach level together with heteronuclear multiple-bond correlation technique in the series of selenium-containing four-, five- and six-membered heterocycles including the derivatives of thiaselenetane, selenasilole, thiaselenole, thiaselenolane and dihydrothiaselenine. Geminal and vicinal (77)Se-(1)H spin-spin couplings were shown to have the pronounced stereochemical dependences in respect with the topology of the coupling pathway, internal rotation of the side-chain substituents and ring inversion providing a straightforward tool for the conformational analysis and diastereotopic assignments in the chiral organoselenium compounds. 相似文献
17.
Andrei V. Afonin Dmitry V. Pavlov Alexander V. Mareev Dmitry E. Simonenko Igor A. Ushakov 《Magnetic resonance in chemistry : MRC》2009,47(7):601-604
In the acetylenic aldehyde oximes with substituents containing silicon and germanium, the 13C NMR signal of the C‐2 carbon of triple bond is shifted by 3.5 ppm to lower frequency and that of the C‐3 carbon is moved by 7 ppm to higher frequency on going from E to Z isomer. A greater low‐frequency effect of 5.5 ppm on the C‐2 carbon signal and a greater high‐frequency effect of 11 ppm on the C‐3 carbon signal are observed in the analogous acetylenic ketone oximes. The carbon chemical shift of the C?N bond is larger by 4 ppm in E isomer relative to Z isomer for the aldehyde and ketone oximes. The 29Si chemical shifts in the silicon containing acetylenic aldehyde and ketone oximes are almost the same for the diverse isomers. The trends in changes of the measured chemical shifts are well reproduced by the gauge‐including atomic orbital (GIAO) calculations of the 13C and 29Si shielding constants. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
(15)N-enriched dihydroxamic acids (HONHCO(CH(2))(n)CONHOH, n = 0, 1, and 2) were prepared and their spectra NMR ((1)H, (13)C, (15)N) recorded in dimethyl sulfoxide (DMSO) solutions with the aim of determining (15)N coupling constants ((15)N-(1)H and (15)N-(13)C). The results supplement chemical shifts published earlier and yield additional support to the structural conclusions derived from other NMR parameters. Notably, no trace of hydroximic structures could be found in the (15)N NMR spectra of these acids. The values of (15)N-(13)C coupling constants backed by theoretical calculations support the assignments made earlier for all of the major conformers and for the minor conformer of succinohydroxamic acid. The enrichment revealed that the minor component of malonodihydroxamic acid solution previously considered to be the ZE conformer is in fact the monohydroxamic acid (HOOC-CH(2)-CO-NH-OH). 相似文献
19.
Andrei V. Afonin Dmitry V. Pavlov Igor A. Ushakov Natalia A. Keiko 《Magnetic resonance in chemistry : MRC》2012,50(7):502-510
In the 13C NMR spectra of methylglyoxal bisdimethylhydrazone, the 13C‐5 signal is shifted to higher frequencies, while the 13C‐6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the 1H‐6 chemical shift and 1J(C‐6,H‐6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the –CH═N– bond does not change. This paradox can be rationalized by the C–H?N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum‐chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ(1H‐6) and 1J(C‐6,H‐6) parameters. The effect of the C–H?N hydrogen bond on the 1H shielding and one‐bond 13C–1H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The 1H, 13C and 15N chemical shifts of the 2‐ and 8‐(CH3)2N groups attached to the –C(CH3)═N– and –CH═N– moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8‐(CH3)2N group conjugate effectively with the π‐framework, and the 2‐(CH3)2N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N‐2– and N‐8– nitrogen lone pairs to the π‐framework varies, which affects the 1H, 13C and 15N shieldings. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
20.
《Magnetic resonance in chemistry : MRC》2003,41(2):91-101
High‐level non‐empirical calculations of carbon–carbon spin–spin coupling constants in a series of strained polycarbocycles have been carried out, in excellent agreement with available experimental data. The utmost importance of electronic correlation effects in this case has been demonstrated and it has been shown that the Second‐Order Polarization Propagator Approach (SOPPA) is an adequate method to account for those effects. It has been demonstrated that the most reliable basis sets to calculate J(C,C) at the SOPPA level are the correlation‐consistent basis sets of Dunning and co‐workers augmented with inner core s‐functions or decontracted in their s‐parts. The nature of the unusual bridgehead–bridgehead bonds in bicyclobutane and propellane in terms of s‐characters of bonding hybrids and also the hybridization effects in spiropentane are discussed based on the arguments derived from the current calculations of J(C,C) in the title compounds. The values of the unknown J(C,C) in propellane and spiropentane are predicted with high reliability. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献